An Archaeal Immune System Can Detect Multiple Protospacer Adjacent Motifs (PAMs) to Target Invader DNA

The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system provides adaptive and heritable immunity against foreign genetic elements in most archaea and many bacteria. Although this system is widespread and diverse with many subtypes, only a few species have...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 287; no. 40; pp. 33351 - 33363
Main Authors Fischer, Susan, Maier, Lisa-Katharina, Stoll, Britta, Brendel, Jutta, Fischer, Eike, Pfeiffer, Friedhelm, Dyall-Smith, Mike, Marchfelder, Anita
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 28.09.2012
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system provides adaptive and heritable immunity against foreign genetic elements in most archaea and many bacteria. Although this system is widespread and diverse with many subtypes, only a few species have been investigated to elucidate the precise mechanisms for the defense of viruses or plasmids. Approximately 90% of all sequenced archaea encode CRISPR/Cas systems, but their molecular details have so far only been examined in three archaeal species: Sulfolobus solfataricus, Sulfolobus islandicus, and Pyrococcus furiosus. Here, we analyzed the CRISPR/Cas system of Haloferax volcanii using a plasmid-based invader assay. Haloferax encodes a type I-B CRISPR/Cas system with eight Cas proteins and three CRISPR loci for which the identity of protospacer adjacent motifs (PAMs) was unknown until now. We identified six different PAM sequences that are required upstream of the protospacer to permit target DNA recognition. This is only the second archaeon for which PAM sequences have been determined, and the first CRISPR group with such a high number of PAM sequences. Cells could survive the plasmid challenge if their CRISPR/Cas system was altered or defective, e.g. by deletion of the cas gene cassette. Experimental PAM data were supplemented with bioinformatics data on Haloferax and Haloquadratum. Background: CRISPR/Cas systems allow archaea and bacteria to resist invasion by foreign nucleic acids. Results: The CRISPR/Cas system in Haloferax recognized six different PAM sequences that could trigger a defense response. Conclusion: The PAM sequence specificity of the defense response in type I CRISPR systems is more relaxed than previously thought. Significance: The PAM sequence requirements for interference and adaptation appear to differ markedly.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE Office of Science (SC), Biological and Environmental Research (BER). Biological Systems Science Division
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M112.377002