基于近红外光谱技术的淡水鱼品种快速鉴别

为探索淡水鱼品种的快速鉴别方法,该文应用近红外光谱分析技术,结合化学计量学方法,对7种淡水鱼品种的判别分类进行了研究。采集了青、草、鲢、鳙、鲤、鲫、鲂等7种淡水鱼,共665个鱼肉样品的近红外光谱数据,经过多元散射校正(multiplicative scatter correction,MSC)、正交信号校正(orthogonal signal correction, OSC)、数据标准化(standardization,S)等20种方法预处理,在1000~1799 nm范围内分别采用偏最小二乘法(partial least square,PLS)、主成分分析(principal compone...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 30; no. 1; pp. 253 - 261
Main Author 徐文杰 刘茹 洪响声 熊善柏
Format Journal Article
LanguageChinese
Published 华中农业大学食品科学技术学院,武汉 430070 2014
国家大宗淡水鱼加工技术研发分中心 武汉,武汉 430070%华中农业大学水产学院,武汉,430070
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.3969/j.issn.1002-6819.2014.01.032

Cover

More Information
Summary:为探索淡水鱼品种的快速鉴别方法,该文应用近红外光谱分析技术,结合化学计量学方法,对7种淡水鱼品种的判别分类进行了研究。采集了青、草、鲢、鳙、鲤、鲫、鲂等7种淡水鱼,共665个鱼肉样品的近红外光谱数据,经过多元散射校正(multiplicative scatter correction,MSC)、正交信号校正(orthogonal signal correction, OSC)、数据标准化(standardization,S)等20种方法预处理,在1000~1799 nm范围内分别采用偏最小二乘法(partial least square,PLS)、主成分分析(principal component analysis,PCA)和BP人工神经网络技术(back propagation artificial neural network,BP-ANN)、偏最小二乘法和BP人工神经网络技术对7种淡水鱼原始光谱数据进行了鉴别分析。结果表明,近红外光谱数据,结合主成分分析和 BP 人工神经网络技术建立的淡水鱼品种鉴别模型最优,模型的鉴别准确率达96.4%,对未知样本的鉴别准确率达95.5%。模型具有较好的鉴别能力,采用该方法能较为准确、快速地鉴别出淡水鱼的品种。
Bibliography:11-2047/S
A new method of discriminating varieties of freshwater fish was developed based on the near infrared spectroscopy technology. 665 freshwater fishes (silver carp 100, herring 100, grass carp 100, bighead carp 100, gurnard 76, carp 89, crucian carp 100) were collected to calibrate the model from different sites in Hubei province of China. The freshwater fishes in this study were obtained from pedlars' market, specialized aquatic research laboratory and aquaculture base. Some of samples were bred in ecological circulating water. Others were bred in non-recycled pool. In addition, freshwater fishes were collected for different seasons. A variety of samples were collected for the model calibration. The near infrared spectra of seven different varieties of 665 freshwater fish samples were analyzed. The discrimination of freshwater fish was conducted with near infrared spectral technology combined with chemometric method. The preprocessing of the spectra can reduce error of prediction, background optical no
ISSN:1002-6819
DOI:10.3969/j.issn.1002-6819.2014.01.032