Tuned Morphological Electrospun Hydroxyapatite Nanofibers via pH

The concept of biocompatible, osteoconductive and noninflammatory material mimicking the structure of natural bone has generated a considerable interest in recent decades. Hydroxyapatite (HA) is an important bionic material that is used for bone grafting in osseous defects and drug carriers. HA with...

Full description

Saved in:
Bibliographic Details
Published inJournal of bionics engineering Vol. 9; no. 4; pp. 478 - 483
Main Authors Song, Xiaofeng, Ling, Fengguang, Li, Haotian, Gao, Zhantuan, Chen, Xuesi
Format Journal Article
LanguageEnglish
Published Singapore Elsevier Ltd 01.12.2012
Springer Singapore
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The concept of biocompatible, osteoconductive and noninflammatory material mimicking the structure of natural bone has generated a considerable interest in recent decades. Hydroxyapatite (HA) is an important bionic material that is used for bone grafting in osseous defects and drug carriers. HA with various morphologies and surface properties have been widely investigated. In this paper, HA nanofibers are produced through a combination of electrospinning and sol-gel technique. The morphologies, composition and structure are investigated by Scanning Electron Microscopy (SEM), Thermogravimetic Analysis (TGA), Fourier Transform Infrared (FTIR), X-ray Diffraction (XRD) patterns, Transmission Electron Microscopy (TEM). The results show that HA nanofibers are even and well-crystallized, and pH is crucial for producing HA nanofibers. With the change of pH from 4 to 9, nanofibers grow densely along (210) plane and become compact while surface area, pore volume and pore size decrease correspondingly. The synthesized HA nanofibers are nontoxic and safe. Zn can be also incorporated into HA nanofibers, which will endow them with more perfect function.
Bibliography:22-1355/TB
electrospinning, sol, hydroxyapatite, pH
The concept of biocompatible, osteoconductive and noninflammatory material mimicking the structure of natural bone has generated a considerable interest in recent decades. Hydroxyapatite (HA) is an important bionic material that is used for bone grafting in osseous defects and drug carriers. HA with various morphologies and surface properties have been widely investi- gated. In this paper, HA nanofibers are produced through a combination of electrospinning and sol-gel technique. The mor- phologies, composition and structure are investigated by Scanning Electron Microscopy (SEM), Thermogravimetic Analysis (TGA), Fourier Transform Infrared (FTIR), X-ray Diffraction (XRD) patterns, Transmission Electron Microscopy (TEM). The results show that HA nanofibers are even and well-crystallized, and pH is crucial for producing HA nanofibers. With the change of pH from 4 to 9, nanofibers grow densely along (210) plane and become compact while surface area, pore volume and pore size decrease correspondingly. The synthesized HA nanofibers are nontoxic and safe. Zn can be also incorporated into HA nanofibers, which will endow them with more perfect function.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1672-6529
2543-2141
DOI:10.1016/S1672-6529(11)60143-1