Soil carbon sequestration and land-use change: processes and potential

Summary When agricultural land is no longer used for cultivation and allowed to revert to natural vegetation or replanted to perennial vegetation, soil organic carbon can accumulate. This accumulation process essentially reverses some of the effects responsible for soil organic carbon losses from wh...

Full description

Saved in:
Bibliographic Details
Published inGlobal change biology Vol. 6; no. 3; pp. 317 - 327
Main Authors Post, W.M, Kwon, K.C
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Science Ltd 01.03.2000
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Summary When agricultural land is no longer used for cultivation and allowed to revert to natural vegetation or replanted to perennial vegetation, soil organic carbon can accumulate. This accumulation process essentially reverses some of the effects responsible for soil organic carbon losses from when the land was converted from perennial vegetation. We discuss the essential elements of what is known about soil organic matter dynamics that may result in enhanced soil carbon sequestration with changes in land‐use and soil management. We review literature that reports changes in soil organic carbon after changes in land‐use that favour carbon accumulation. This data summary provides a guide to approximate rates of SOC sequestration that are possible with management, and indicates the relative importance of some factors that influence the rates of organic carbon sequestration in soil. There is a large variation in the length of time for and the rate at which carbon may accumulate in soil, related to the productivity of the recovering vegetation, physical and biological conditions in the soil, and the past history of soil organic carbon inputs and physical disturbance. Maximum rates of C accumulation during the early aggrading stage of perennial vegetation growth, while substantial, are usually much less than 100 g C m−2 y−1. Average rates of accumulation are similar for forest or grassland establishment: 33.8 g C m−2 y−1 and 33.2 g C m−2 y−1, respectively. These observed rates of soil organic C accumulation, when combined with the small amount of land area involved, are insufficient to account for a significant fraction of the missing C in the global carbon cycle as accumulating in the soils of formerly agricultural land.
Bibliography:ArticleID:GCB308
istex:8E3B5173A02319E0087879B0B0135E96DCA392D5
ark:/67375/WNG-6163L4DG-6
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1354-1013
1365-2486
DOI:10.1046/j.1365-2486.2000.00308.x