Antioxidant effects of Cirsium setidens extract on oxidative stress in human mesenchymal stem cells

Human mesenchymal stem cells (MSCs) may be used in cell-based therapy to promote neovascularization for the treatment of ischemic diseases. However, high levels of reactive oxygen species (ROS) derived from the pathophysiological ischemic environment induce senescence and apoptosis of MSCs, resultin...

Full description

Saved in:
Bibliographic Details
Published inMolecular medicine reports Vol. 14; no. 4; pp. 3777 - 3784
Main Authors Lee, Jun Hee, Jung, Ho Kyung, Han, Yong-Seok, Yoon, Yeo Min, Yun, Chul Won, Sun, Hwa Yeon, Cho, Hyun Woo, Lee, Sang Hun
Format Journal Article
LanguageEnglish
Published Greece D.A. Spandidos 01.10.2016
Spandidos Publications
Spandidos Publications UK Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Human mesenchymal stem cells (MSCs) may be used in cell-based therapy to promote neovascularization for the treatment of ischemic diseases. However, high levels of reactive oxygen species (ROS) derived from the pathophysiological ischemic environment induce senescence and apoptosis of MSCs, resulting in reduced functionality and defective neovascularization. Therefore, the present study aimed to determine the protective effects of Cirsium setidens, a natural product, on oxidative stress-induced apoptosis in MSCs. The present study investigated for the change of ROS levels in MSCs using ROS assays. In addition, cell viability determined by MTT and TUNEL assays. Western blot analysis was performed to investigate the change of apoptosis-associated proteins in MSCs. Treatment of MSCs with hydrogen peroxide (H2O2; 200 µM) significantly increased intracellular ROS levels and cell death; however, pretreatment with C. setidens (100 µg/ml) suppressed H2O2-induced ROS generation and increased the survival of MSCs. H2O2-induced ROS production increased the levels of phosphorylated-p38 mitogen activated protein kinase, c-Jun N-terminal kinase, ataxia telangiectasia mutated and p53; these increases were inhibited by pretreatment with C. setidens. In addition, C. setidens inhibited ROS-induced apoptosis of MSCs by increasing the expression levels of the anti-apoptotic protein B-cell lymphoma 2 (BCL-2), and decreasing the expression levels of the proapoptotic protein BCL-2-associated X protein. These findings indicated that pretreatment of MSCs with C. setidens may prevent ROS-induced oxidative injury by regulating the oxidative stress-associated signaling pathway, and suppressing the apoptosis-associated signal pathway. Therefore, C. setidens may be developed as a beneficial broad-spectrum agent for enhancing the effectiveness of MSC transplantation in the treatment of ischemic diseases.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1791-2997
1791-3004
DOI:10.3892/mmr.2016.5706