Graphene Array-Based Anti-fouling Solar Vapour Gap Membrane Distillation with High Energy Efficiency

Highlights New concept of solar vapour gap membrane distillation (SVGMD) is based on synergizing of nanochannel-guided water transport, localized heating, and membrane separation from feed solution. First-time introduction of the gap enables long-term stability and non-fouling membrane. SVGMD exhibi...

Full description

Saved in:
Bibliographic Details
Published inNano-micro letters Vol. 11; no. 1; pp. 1 - 14
Main Authors Gong, Biyao, Yang, Huachao, Wu, Shenghao, Xiong, Guoping, Yan, Jianhua, Cen, Kefa, Bo, Zheng, Ostrikov, Kostya
Format Journal Article
LanguageEnglish
Published Singapore Springer Singapore 01.12.2019
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Highlights New concept of solar vapour gap membrane distillation (SVGMD) is based on synergizing of nanochannel-guided water transport, localized heating, and membrane separation from feed solution. First-time introduction of the gap enables long-term stability and non-fouling membrane. SVGMD exhibits a solar-water energy efficiency higher than state-of-the-art solar vapour systems. Photothermal membrane distillation (MD) is a promising technology for desalination and water purification. However, solar-thermal conversion suffers from low energy efficiency (a typical solar-water efficiency of ~ 50%), while complex modifications are needed to reduce membrane fouling. Here, we demonstrate a new concept of solar vapour gap membrane distillation (SVGMD) synergistically combining self-guided water transport, localized heating, and separation of membrane from feed solution. A free-standing, multifunctional light absorber based on graphene array is custom-designed to locally heat the thin water layer transporting through graphene nanochannels. The as-generated vapour passes through a gap and condenses, while salt/contaminants are rejected before reaching the membrane. The high solar-water efficiency (73.4% at 1 sun), clean water collection ratio (82.3%), excellent anti-fouling performance, and stable permeate flux in continuous operation over 72 h are simultaneously achieved. Meanwhile, SVGMD inherits the advantage of MD in microorganism removal and water collection, enabling the solar-water efficiency 3.5 times higher compared to state-of-the-art solar vapour systems. A scaled system to treat oil/seawater mixtures under natural sunlight is developed with a purified water yield of 92.8 kg m −2  day −1 . Our results can be applied for diverse mixed-phase feeds, leading to the next-generation solar-driven MD technology.
AbstractList Highlights New concept of solar vapour gap membrane distillation (SVGMD) is based on synergizing of nanochannel-guided water transport, localized heating, and membrane separation from feed solution. First-time introduction of the gap enables long-term stability and non-fouling membrane. SVGMD exhibits a solar-water energy efficiency higher than state-of-the-art solar vapour systems. Photothermal membrane distillation (MD) is a promising technology for desalination and water purification. However, solar-thermal conversion suffers from low energy efficiency (a typical solar-water efficiency of ~ 50%), while complex modifications are needed to reduce membrane fouling. Here, we demonstrate a new concept of solar vapour gap membrane distillation (SVGMD) synergistically combining self-guided water transport, localized heating, and separation of membrane from feed solution. A free-standing, multifunctional light absorber based on graphene array is custom-designed to locally heat the thin water layer transporting through graphene nanochannels. The as-generated vapour passes through a gap and condenses, while salt/contaminants are rejected before reaching the membrane. The high solar-water efficiency (73.4% at 1 sun), clean water collection ratio (82.3%), excellent anti-fouling performance, and stable permeate flux in continuous operation over 72 h are simultaneously achieved. Meanwhile, SVGMD inherits the advantage of MD in microorganism removal and water collection, enabling the solar-water efficiency 3.5 times higher compared to state-of-the-art solar vapour systems. A scaled system to treat oil/seawater mixtures under natural sunlight is developed with a purified water yield of 92.8 kg m −2  day −1 . Our results can be applied for diverse mixed-phase feeds, leading to the next-generation solar-driven MD technology.
Abstract Photothermal membrane distillation (MD) is a promising technology for desalination and water purification. However, solar-thermal conversion suffers from low energy efficiency (a typical solar-water efficiency of ~ 50%), while complex modifications are needed to reduce membrane fouling. Here, we demonstrate a new concept of solar vapour gap membrane distillation (SVGMD) synergistically combining self-guided water transport, localized heating, and separation of membrane from feed solution. A free-standing, multifunctional light absorber based on graphene array is custom-designed to locally heat the thin water layer transporting through graphene nanochannels. The as-generated vapour passes through a gap and condenses, while salt/contaminants are rejected before reaching the membrane. The high solar-water efficiency (73.4% at 1 sun), clean water collection ratio (82.3%), excellent anti-fouling performance, and stable permeate flux in continuous operation over 72 h are simultaneously achieved. Meanwhile, SVGMD inherits the advantage of MD in microorganism removal and water collection, enabling the solar-water efficiency 3.5 times higher compared to state-of-the-art solar vapour systems. A scaled system to treat oil/seawater mixtures under natural sunlight is developed with a purified water yield of 92.8 kg m−2 day−1. Our results can be applied for diverse mixed-phase feeds, leading to the next-generation solar-driven MD technology.
HighlightsNew concept of solar vapour gap membrane distillation (SVGMD) is based on synergizing of nanochannel-guided water transport, localized heating, and membrane separation from feed solution.First-time introduction of the gap enables long-term stability and non-fouling membrane.SVGMD exhibits a solar-water energy efficiency higher than state-of-the-art solar vapour systems.
Photothermal membrane distillation (MD) is a promising technology for desalination and water purification. However, solar-thermal conversion suffers from low energy efficiency (a typical solar-water efficiency of ~ 50%), while complex modifications are needed to reduce membrane fouling. Here, we demonstrate a new concept of solar vapour gap membrane distillation (SVGMD) synergistically combining self-guided water transport, localized heating, and separation of membrane from feed solution. A free-standing, multifunctional light absorber based on graphene array is custom-designed to locally heat the thin water layer transporting through graphene nanochannels. The as-generated vapour passes through a gap and condenses, while salt/contaminants are rejected before reaching the membrane. The high solar-water efficiency (73.4% at 1 sun), clean water collection ratio (82.3%), excellent anti-fouling performance, and stable permeate flux in continuous operation over 72 h are simultaneously achieved. Meanwhile, SVGMD inherits the advantage of MD in microorganism removal and water collection, enabling the solar-water efficiency 3.5 times higher compared to state-of-the-art solar vapour systems. A scaled system to treat oil/seawater mixtures under natural sunlight is developed with a purified water yield of 92.8 kg m-2 day-1. Our results can be applied for diverse mixed-phase feeds, leading to the next-generation solar-driven MD technology.Photothermal membrane distillation (MD) is a promising technology for desalination and water purification. However, solar-thermal conversion suffers from low energy efficiency (a typical solar-water efficiency of ~ 50%), while complex modifications are needed to reduce membrane fouling. Here, we demonstrate a new concept of solar vapour gap membrane distillation (SVGMD) synergistically combining self-guided water transport, localized heating, and separation of membrane from feed solution. A free-standing, multifunctional light absorber based on graphene array is custom-designed to locally heat the thin water layer transporting through graphene nanochannels. The as-generated vapour passes through a gap and condenses, while salt/contaminants are rejected before reaching the membrane. The high solar-water efficiency (73.4% at 1 sun), clean water collection ratio (82.3%), excellent anti-fouling performance, and stable permeate flux in continuous operation over 72 h are simultaneously achieved. Meanwhile, SVGMD inherits the advantage of MD in microorganism removal and water collection, enabling the solar-water efficiency 3.5 times higher compared to state-of-the-art solar vapour systems. A scaled system to treat oil/seawater mixtures under natural sunlight is developed with a purified water yield of 92.8 kg m-2 day-1. Our results can be applied for diverse mixed-phase feeds, leading to the next-generation solar-driven MD technology.
New concept of solar vapour gap membrane distillation (SVGMD) is based on synergizing of nanochannel-guided water transport, localized heating, and membrane separation from feed solution. First-time introduction of the gap enables long-term stability and non-fouling membrane. SVGMD exhibits a solar-water energy efficiency higher than state-of-the-art solar vapour systems. Photothermal membrane distillation (MD) is a promising technology for desalination and water purification. However, solar-thermal conversion suffers from low energy efficiency (a typical solar-water efficiency of ~ 50%), while complex modifications are needed to reduce membrane fouling. Here, we demonstrate a new concept of solar vapour gap membrane distillation (SVGMD) synergistically combining self-guided water transport, localized heating, and separation of membrane from feed solution. A free-standing, multifunctional light absorber based on graphene array is custom-designed to locally heat the thin water layer transporting through graphene nanochannels. The as-generated vapour passes through a gap and condenses, while salt/contaminants are rejected before reaching the membrane. The high solar-water efficiency (73.4% at 1 sun), clean water collection ratio (82.3%), excellent anti-fouling performance, and stable permeate flux in continuous operation over 72 h are simultaneously achieved. Meanwhile, SVGMD inherits the advantage of MD in microorganism removal and water collection, enabling the solar-water efficiency 3.5 times higher compared to state-of-the-art solar vapour systems. A scaled system to treat oil/seawater mixtures under natural sunlight is developed with a purified water yield of 92.8 kg m −2  day −1 . Our results can be applied for diverse mixed-phase feeds, leading to the next-generation solar-driven MD technology.
ArticleNumber 51
Author Ostrikov, Kostya
Xiong, Guoping
Yang, Huachao
Bo, Zheng
Yan, Jianhua
Gong, Biyao
Wu, Shenghao
Cen, Kefa
Author_xml – sequence: 1
  givenname: Biyao
  surname: Gong
  fullname: Gong, Biyao
  organization: State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University
– sequence: 2
  givenname: Huachao
  surname: Yang
  fullname: Yang, Huachao
  organization: State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University
– sequence: 3
  givenname: Shenghao
  surname: Wu
  fullname: Wu, Shenghao
  organization: State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University
– sequence: 4
  givenname: Guoping
  surname: Xiong
  fullname: Xiong, Guoping
  organization: Department of Mechanical Engineering, University of Nevada
– sequence: 5
  givenname: Jianhua
  surname: Yan
  fullname: Yan, Jianhua
  organization: State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University
– sequence: 6
  givenname: Kefa
  surname: Cen
  fullname: Cen, Kefa
  organization: State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University
– sequence: 7
  givenname: Zheng
  surname: Bo
  fullname: Bo, Zheng
  email: bozh@zju.edu.cn
  organization: State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University
– sequence: 8
  givenname: Kostya
  surname: Ostrikov
  fullname: Ostrikov, Kostya
  organization: Joint CSIRO-QUT Sustainable Processes and Devices Laboratory, School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology
BookMark eNp9Uk1v3CAURFWqJk3zA3qz1EsvbnkYDL5U2qbbTaRUPfTjip4x9hJ5wQVvqv33JXGqKpEaCQGCmeHNY16SIx-8JeQ10HdAqXyfOFWMlhSakjIFJTwjJwwELYUQcJT3FUBZS1ofk7OUXEsF45JJwV-Q44pDJRslTki3iThtrbfFKkY8lB8x2a5Y-dmVfdiPzg_FtzBiLH7iFPax2OBUfLG7NmKmfHJpduOIswu--O3mbXHhhm2x9jYOh2Ld9844683hFXne45js2f16Sn58Xn8_vyivvm4uz1dXpRGKziVDY1oQPVa96g10wtSsqim3srMoGjSyMlxaChRk3Qku2zo76muUUoERtDoll4tuF_BaT9HtMB50QKfvDkIcNMbZmdHqVuW3EGrWGcrbDhth86SElFAr4H3W-rBoTft2Zztj_RxxfCD68Ma7rR7CjZZSUqVYFnh7LxDDr71Ns965ZGxul7dhnzQTPLuDRqkMffMIep177XOrNKtYHko1_EkUq6SQgtI6o-SCMjGkFG2vjZvvfihX6UYNVN_GRy_x0Tk--jY-GjITHjH_mn2KwxZOylg_2Pivpv-T_gC8M9av
CitedBy_id crossref_primary_10_1016_j_xcrp_2021_100330
crossref_primary_10_1002_adfm_202101036
crossref_primary_10_1002_ente_202300430
crossref_primary_10_1016_j_memsci_2024_122967
crossref_primary_10_1016_j_watres_2021_117154
crossref_primary_10_1017_jfm_2021_817
crossref_primary_10_1021_acsami_3c08201
crossref_primary_10_1007_s40820_023_01034_4
crossref_primary_10_1016_j_nanoen_2020_105444
crossref_primary_10_1039_D1TA05058C
crossref_primary_10_1016_j_nanoen_2021_106339
crossref_primary_10_1007_s10973_020_09940_0
crossref_primary_10_1007_s11431_022_2332_3
crossref_primary_10_1002_smtd_202001200
crossref_primary_10_1021_acsami_2c15212
crossref_primary_10_1016_j_desal_2021_115460
crossref_primary_10_3390_pr12122681
crossref_primary_10_1016_j_mtener_2024_101588
crossref_primary_10_1016_j_pmatsci_2024_101309
crossref_primary_10_1021_acsami_0c07921
crossref_primary_10_1021_acs_est_4c10047
crossref_primary_10_1016_j_desal_2024_118078
crossref_primary_10_1021_acssuschemeng_9b06160
crossref_primary_10_3390_membranes13040437
crossref_primary_10_1016_j_applthermaleng_2021_117557
crossref_primary_10_1016_j_cej_2021_129822
crossref_primary_10_1039_D0NR08956G
crossref_primary_10_1016_j_carbon_2020_09_033
crossref_primary_10_1007_s10973_020_09494_1
crossref_primary_10_3390_membranes13020163
crossref_primary_10_1016_j_chemosphere_2020_128871
crossref_primary_10_1063_5_0080876
crossref_primary_10_1007_s11705_023_2339_3
crossref_primary_10_1016_j_jclepro_2022_135737
crossref_primary_10_1016_j_jece_2022_107974
crossref_primary_10_1016_j_watres_2023_120807
crossref_primary_10_1021_acsami_0c17154
crossref_primary_10_1039_D0TA11724B
crossref_primary_10_3390_membranes12090899
crossref_primary_10_1007_s40820_021_00748_7
crossref_primary_10_1016_j_desal_2022_116044
crossref_primary_10_1039_D2NR04857D
crossref_primary_10_1016_j_jclepro_2023_137335
crossref_primary_10_1016_j_nanoen_2020_105353
crossref_primary_10_3390_membranes14070160
crossref_primary_10_1016_j_desal_2024_117534
crossref_primary_10_1016_j_powtec_2019_11_039
crossref_primary_10_3390_en15165990
crossref_primary_10_3389_fenrg_2022_828594
crossref_primary_10_1021_acsomega_3c01114
crossref_primary_10_1016_j_colsurfa_2022_129018
crossref_primary_10_1016_j_desal_2022_116063
crossref_primary_10_1016_j_nanoen_2023_109180
crossref_primary_10_1002_advs_201903478
crossref_primary_10_1016_j_watres_2021_117299
crossref_primary_10_1016_j_ccr_2022_214794
crossref_primary_10_1016_j_susmat_2020_e00181
crossref_primary_10_1016_j_rser_2020_110547
crossref_primary_10_1016_j_enconman_2021_114111
crossref_primary_10_1016_j_solener_2022_10_042
crossref_primary_10_1016_j_carbon_2021_04_077
crossref_primary_10_1016_j_desal_2022_115726
crossref_primary_10_1039_D3GC02805D
crossref_primary_10_1016_j_memsci_2021_119188
crossref_primary_10_1039_D1QM00101A
crossref_primary_10_1016_j_memsci_2021_119500
crossref_primary_10_3390_en15218051
crossref_primary_10_1016_j_jclepro_2022_135100
crossref_primary_10_1016_j_seppur_2022_122348
crossref_primary_10_1016_j_memsci_2020_118413
crossref_primary_10_1016_j_desal_2024_117320
crossref_primary_10_5004_dwt_2022_28460
crossref_primary_10_1016_j_mtsust_2023_100319
crossref_primary_10_1021_acssuschemeng_3c00819
crossref_primary_10_1016_j_wasman_2025_02_024
crossref_primary_10_1016_j_memsci_2023_122113
crossref_primary_10_1016_j_matpr_2021_09_346
crossref_primary_10_1016_j_solener_2023_112187
crossref_primary_10_1021_acsami_4c09383
crossref_primary_10_1002_adfm_202212245
crossref_primary_10_1021_acsami_4c13768
crossref_primary_10_1016_j_solener_2022_05_038
crossref_primary_10_3390_membranes13050483
crossref_primary_10_1007_s11051_020_04819_5
crossref_primary_10_1039_D1RA00278C
crossref_primary_10_1016_j_seppur_2023_125103
crossref_primary_10_1002_adsu_202000004
crossref_primary_10_1039_D1TA03014K
Cites_doi 10.1016/j.seppur.2017.05.021
10.1002/admi.201400099
10.1016/j.desal.2018.05.006
10.1016/j.memsci.2017.02.013
10.1016/j.memsci.2018.08.032
10.1016/j.snb.2017.10.043
10.1016/j.rser.2017.05.078
10.1038/nphoton.2016.75
10.1016/j.desal.2016.11.001
10.1039/c7ta03977h
10.1002/adfm.201707134
10.1016/j.apenergy.2017.01.055
10.1038/ncomms10103
10.1073/pnas.1613031113
10.1021/acs.est.6b02316
10.1039/c8ee00220g
10.1073/pnas.1701835114
10.1016/j.watres.2017.10.015
10.1016/j.jmst.2013.03.023
10.1126/science.1137014
10.1039/c7ta04555g
10.1039/c4cs00352g
10.1038/nature06599
10.1016/j.apenergy.2017.03.080
10.1038/ncomms5449
10.1002/adma.201702590
10.1021/acs.est.6b03882
10.1002/adma.201301794
10.1039/c8ee00291f
10.1002/adma.201603504
10.1039/c8ta05738a
10.12989/mwt.2015.6.4.323
10.1016/j.memsci.2017.10.017
10.1021/acsami.8b00271
10.1002/gch2.201600003
10.1016/j.watres.2017.01.022
10.1002/adma.201301480
10.1016/j.apenergy.2012.11.074
10.1038/s41467-018-02871-3
10.1021/am401462e
ContentType Journal Article
Copyright The Author(s) 2019
Copyright Springer Nature B.V. 2019
Nano-Micro Letters is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: Copyright Springer Nature B.V. 2019
– notice: Nano-Micro Letters is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.1007/s40820-019-0281-1
DatabaseName Springer Nature OA/Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2150-5551
EndPage 14
ExternalDocumentID oai_doaj_org_article_b8ccba162dc04bda95eda9857716814f
PMC7770882
10_1007_s40820_019_0281_1
GroupedDBID -02
-0B
-SB
-S~
0R~
4.4
5VR
5VS
8FE
8FG
92H
92I
92M
92R
93N
9D9
9DB
AAFWJ
AAJSJ
AAKKN
AAXDM
ABDBF
ABEEZ
ABJCF
ACACY
ACGFS
ACIWK
ACUHS
ACULB
ADBBV
ADINQ
ADMLS
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFUIB
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
ASPBG
AVWKF
BAPOH
BCNDV
BENPR
BGLVJ
C1A
C24
C6C
CAJEB
CCEZO
CCPQU
CDRFL
D1I
EBLON
EBS
EJD
ESX
FA0
GROUPED_DOAJ
GX1
HCIFZ
IAO
IHR
IPNFZ
ITC
JUIAU
KB.
KQ8
KWQ
L6V
M7S
MM.
M~E
OK1
P62
PDBOC
PGMZT
PIMPY
PROAC
PTHSS
Q--
R-B
RIG
RNS
RPM
RSV
RT2
SOJ
T8R
TCJ
TGT
TR2
TUS
U1F
U1G
U5B
U5L
~LU
AASML
AAYXX
CITATION
PHGZM
PHGZT
PQGLB
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c580t-2accb15fa3f8fc1d5c623604e7dea59ac73c47e010176d547b6472f6a7781c503
IEDL.DBID C24
ISSN 2311-6706
2150-5551
IngestDate Wed Aug 27 01:19:32 EDT 2025
Thu Aug 21 18:26:55 EDT 2025
Thu Jul 10 17:48:05 EDT 2025
Fri Jul 25 11:16:13 EDT 2025
Fri Jul 25 11:02:06 EDT 2025
Tue Jul 01 00:55:43 EDT 2025
Thu Apr 24 23:03:35 EDT 2025
Fri Feb 21 02:35:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Water purification
Plasma-made nanostructures
Photothermal conversion
Solar energy
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c580t-2accb15fa3f8fc1d5c623604e7dea59ac73c47e010176d547b6472f6a7781c503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://link.springer.com/10.1007/s40820-019-0281-1
PMID 34137985
PQID 2322328894
PQPubID 2044332
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_b8ccba162dc04bda95eda9857716814f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7770882
proquest_miscellaneous_2542361988
proquest_journals_2322328894
proquest_journals_2237575006
crossref_citationtrail_10_1007_s40820_019_0281_1
crossref_primary_10_1007_s40820_019_0281_1
springer_journals_10_1007_s40820_019_0281_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20191200
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 20191200
PublicationDecade 2010
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Heidelberg
PublicationTitle Nano-micro letters
PublicationTitleAbbrev Nano-Micro Lett
PublicationYear 2019
Publisher Springer Singapore
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Singapore
– name: Springer Nature B.V
– name: SpringerOpen
References Boo, Lee, Elimelech (CR24) 2016; 50
Sathish Kumar, Arthanareeswaran, Paul, Hyang (CR26) 2015; 6
Yue, Lior (CR3) 2017; 191
Deshmukh, Boo, Karanikola, Lin, Straub, Tong, Warsinger, Elimelech (CR18) 2018; 11
Li, Xu, Tang, Zhou, Zhu, Zhu, Zhu (CR6) 2016; 113
Politano, Argurio, Profio, Sanna, Cupolillo, Chakraborty, Arafat, Curcio (CR11) 2017; 29
Wu, Jiang, Ghim, Singamaneni, Jun (CR17) 2018; 6
Bae, Kang, Cho, Park, Kim, Padilla (CR9) 2015; 6
CR35
González, Amigo, Suárez (CR19) 2017; 80
CR34
Ren, Tang, Guan, Wang, Yang (CR33) 2017; 29
Liu, Song, Ji, Li, Cheney (CR42) 2017; 1
Ghasemi, Ni, Marconnet, Loomis, Yerci, Miljkovic, Chen (CR5) 2014; 5
Teng, Lu, Ren, Zhu, Wan, Jiang (CR38) 2014; 1
Seo, Pineda, Woo, Xie, Murdock (CR21) 2018; 9
Ni, Zandavi, Javid Svetlana, Boriskina, Coopera, Chen (CR10) 2018; 11
Jiang, Tang, Park-Lee, Hess, Breedveld (CR27) 2017; 184
Huang, Pei, Jiang, Hu (CR15) 2018; 442
Kashyap, Al-Bayati, Sajadi (CR40) 2017; 5
Dongare, Alabastri, Pedersen, Zodrow, Hogan (CR13) 2017; 114
Wu, Zodrow, Szemraj, Li (CR12) 2017; 5
Zhang, Zhang, Shi, Wang, Jin, Jiang (CR39) 2013; 25
Hou, Zhu, Xu, Liu (CR41) 2013; 29
Fujiwara, Kikuchi (CR16) 2017; 127
Boo, Lee, Elimelech (CR25) 2016; 50
Rezaei, Warsinger, Lienhard, Samhabera (CR22) 2017; 530
Wang, He, Liu, Cheng, Zhu (CR7) 2017; 195
Hou, Wang, Wang, Wang, Lin (CR23) 2018; 546
Zhou, Tan, Wang, Xu, Yuan, Can, Zhu, Zhu (CR8) 2016; 10
Shannon, Bohn, Elimelech, Georgiadis, Mariñas, Mayes (CR4) 2008; 452
Wang, Liu, Yu, Lee, Wang, Zheng, Wang, Yun, Lee (CR30) 2018; 10
Bo, Yuan, Mao, Chen, Yan, Cen (CR31) 2018; 256
Liang, Kang, Tiraferri, Giannelis, Huang (CR36) 2013; 5
Lewis (CR1) 2007; 315
Tan, Wang, Han, Tanis-Kanbur, Pranava, Chew (CR20) 2018; 565
Bo, Zhu, Ma, Wen, Shuai (CR28) 2013; 25
Gao, Liu, Zhang, Yan, Ban, Xu, Qin (CR2) 2013; 105
Bo, Mao, Han, Cen, Chen, Ostrikov (CR29) 2015; 44
Fujiwara (CR14) 2017; 404
Li, Liu, Zhao, Chen, Dai (CR32) 2018; 28
Wang, Lin (CR37) 2017; 112
Z Bo (281_CR31) 2018; 256
X Wu (281_CR17) 2018; 6
M Fujiwara (281_CR14) 2017; 404
F Zhang (281_CR39) 2013; 25
K Bae (281_CR9) 2015; 6
DH Seo (281_CR21) 2018; 9
T Li (281_CR32) 2018; 28
PD Dongare (281_CR13) 2017; 114
A Deshmukh (281_CR18) 2018; 11
L Zhou (281_CR8) 2016; 10
C Boo (281_CR25) 2016; 50
X Wang (281_CR7) 2017; 195
L Huang (281_CR15) 2018; 442
J Hou (281_CR41) 2013; 29
NS Lewis (281_CR1) 2007; 315
XQ Li (281_CR6) 2016; 113
A Politano (281_CR11) 2017; 29
Z Wang (281_CR37) 2017; 112
R Sathish Kumar (281_CR26) 2015; 6
D Hou (281_CR23) 2018; 546
Z Bo (281_CR29) 2015; 44
Z Bo (281_CR28) 2013; 25
X Gao (281_CR2) 2013; 105
J Wu (281_CR12) 2017; 5
D González (281_CR19) 2017; 80
V Kashyap (281_CR40) 2017; 5
281_CR35
L Jiang (281_CR27) 2017; 184
281_CR34
S Liang (281_CR36) 2013; 5
MA Shannon (281_CR4) 2008; 452
M Fujiwara (281_CR16) 2017; 127
Z Liu (281_CR42) 2017; 1
H Ghasemi (281_CR5) 2014; 5
M Rezaei (281_CR22) 2017; 530
C Boo (281_CR24) 2016; 50
C Teng (281_CR38) 2014; 1
H Ren (281_CR33) 2017; 29
YZ Tan (281_CR20) 2018; 565
M Wang (281_CR30) 2018; 10
T Yue (281_CR3) 2017; 191
G Ni (281_CR10) 2018; 11
References_xml – volume: 184
  start-page: 394
  year: 2017
  end-page: 403
  ident: CR27
  article-title: Fabrication of non-fluorinated hydrophilic-oleophobic stainless steel mesh for oil-water separation
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2017.05.021
– volume: 1
  start-page: 1400099
  year: 2014
  ident: CR38
  article-title: Underwater self-cleaning PEDOT-PSS hydrogel mesh for effective separation of corrosive and hot oil/water mixtures
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201400099
– volume: 442
  start-page: 1
  year: 2018
  end-page: 7
  ident: CR15
  article-title: Water desalination under one sun using graphene-based material modified PTFE membrane
  publication-title: Desalination
  doi: 10.1016/j.desal.2018.05.006
– volume: 530
  start-page: 42
  year: 2017
  end-page: 52
  ident: CR22
  article-title: Wetting prevention in membrane distillation through superhydrophobicity and recharging an air layer on the membrane surface
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2017.02.013
– volume: 565
  start-page: 254
  year: 2018
  end-page: 265
  ident: CR20
  article-title: Photothermal-enhanced and fouling-resistant membrane for solar-assisted membrane distillation
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2018.08.032
– volume: 256
  start-page: 1011
  year: 2018
  end-page: 1020
  ident: CR31
  article-title: Decoration of vertical graphene with tin dioxide nanoparticles for highly sensitive room temperature formaldehyde sensing
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2017.10.043
– volume: 80
  start-page: 238
  year: 2017
  end-page: 259
  ident: CR19
  article-title: Membrane distillation: perspectives for sustainable and improved desalination
  publication-title: Renew. Sust. Energy Rev.
  doi: 10.1016/j.rser.2017.05.078
– ident: CR35
– volume: 10
  start-page: 393
  year: 2016
  end-page: 398
  ident: CR8
  article-title: 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2016.75
– volume: 404
  start-page: 79
  year: 2017
  end-page: 86
  ident: CR14
  article-title: Water desalination using visible light by disperse red 1 modified PTFE membrane
  publication-title: Desalination
  doi: 10.1016/j.desal.2016.11.001
– volume: 5
  start-page: 15227
  year: 2017
  end-page: 15234
  ident: CR40
  article-title: A flexible anti-clogging graphite film for scalable solar desalination by heat localization
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c7ta03977h
– volume: 28
  start-page: 1707134
  year: 2018
  ident: CR32
  article-title: Scalable and highly efficient mesoporous wood-based solar steam generation device: localized heat, rapid water transport
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201707134
– volume: 191
  start-page: 204
  year: 2017
  end-page: 222
  ident: CR3
  article-title: Exergo economic analysis of solar-assisted hybrid power generation systems integrated with thermochemical fuel conversion
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.01.055
– volume: 6
  start-page: 10103
  year: 2015
  ident: CR9
  article-title: Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10103
– volume: 113
  start-page: 13953
  year: 2016
  end-page: 13958
  ident: CR6
  article-title: Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1613031113
– volume: 50
  start-page: 8112
  year: 2016
  end-page: 8119
  ident: CR24
  article-title: Engineering surface energy and nanostructure of microporous films for expanded membrane distillation applications
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b02316
– volume: 11
  start-page: 1510
  year: 2018
  end-page: 1519
  ident: CR10
  article-title: A salt-rejecting floating solar still for low-cost desalination
  publication-title: Environ. Sci. Technol.
  doi: 10.1039/c8ee00220g
– volume: 114
  start-page: 6936
  year: 2017
  end-page: 6941
  ident: CR13
  article-title: Nanophotonics-enabled solar membrane distillation for off-grid water purification
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1701835114
– volume: 127
  start-page: 96
  year: 2017
  end-page: 103
  ident: CR16
  article-title: Solar desalination of seawater using double-dye-modified PTFE membrane
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.10.015
– volume: 29
  start-page: 678
  year: 2013
  end-page: 684
  ident: CR41
  article-title: Anticorrosion performance of epoxy coatings containing small amount of inherently conducting PEDOT/PSS on hull steel in seawater
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2013.03.023
– volume: 315
  start-page: 798
  year: 2007
  end-page: 801
  ident: CR1
  article-title: Toward cost-effective solar energy use
  publication-title: Science
  doi: 10.1126/science.1137014
– volume: 5
  start-page: 23712
  year: 2017
  end-page: 23719
  ident: CR12
  article-title: Photothermal nanocomposite membranes for direct solar membrane distillation
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c7ta04555g
– volume: 44
  start-page: 2108
  year: 2015
  end-page: 2121
  ident: CR29
  article-title: Emerging energy and environmental applications of vertically-oriented graphenes
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c4cs00352g
– volume: 452
  start-page: 301
  year: 2008
  end-page: 310
  ident: CR4
  article-title: Science and technology for water purification in the coming decades
  publication-title: Nature
  doi: 10.1038/nature06599
– volume: 195
  start-page: 414
  year: 2017
  end-page: 425
  ident: CR7
  article-title: Solar steam generation through bio-inspired interface heating of broadband-absorbing plasmonic membranes
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.03.080
– volume: 5
  start-page: 7
  year: 2014
  ident: CR5
  article-title: Solar steam generation by heat localization
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5449
– volume: 29
  start-page: 1702590
  year: 2017
  ident: CR33
  article-title: Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201702590
– volume: 50
  start-page: 12275
  year: 2016
  end-page: 12282
  ident: CR25
  article-title: Omniphobic polyvinylidene fluoride (PVDF) membrane for desalination of shale gas produced water by membrane distillation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b03882
– volume: 25
  start-page: 5799
  year: 2013
  ident: CR28
  article-title: Vertically oriented graphene bridging active-layer/current-collector interface for ultrahigh rate supercapacitors
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201301794
– volume: 11
  start-page: 1177
  year: 2018
  end-page: 1196
  ident: CR18
  article-title: Membrane distillation at the water-energy nexus: limits, opportunities, and challenges
  publication-title: Environ. Sci. Technol.
  doi: 10.1039/c8ee00291f
– volume: 29
  start-page: 1603504
  year: 2017
  ident: CR11
  article-title: Photothermal membrane distillation for seawater desalination
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603504
– volume: 6
  start-page: 18799
  year: 2018
  end-page: 18807
  ident: CR17
  article-title: A localized heating with a photothermal polydopamine coating facilitates a novel membrane distillation process
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c8ta05738a
– volume: 6
  start-page: 323
  year: 2015
  end-page: 337
  ident: CR26
  article-title: Modification methods of polyethersulfone membranes for minimizing fouling—review
  publication-title: Membr. Water Treat.
  doi: 10.12989/mwt.2015.6.4.323
– ident: CR34
– volume: 546
  start-page: 179
  year: 2018
  end-page: 187
  ident: CR23
  article-title: Composite membrane with electrospun multiscale-textured surface for robust oil-fouling resistance in membrane distillation
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2017.10.017
– volume: 10
  start-page: 13452
  year: 2018
  end-page: 13461
  ident: CR30
  article-title: ZnO nanorod array modified PVDF membrane with superhydrophobic surface for vacuum membrane distillation application
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b00271
– volume: 1
  start-page: 1600003
  year: 2017
  ident: CR42
  article-title: Extremely cost-effective and efficient solar vapour generation under nonconcentrated illumination using thermally isolated black paper
  publication-title: Global Challenges
  doi: 10.1002/gch2.201600003
– volume: 112
  start-page: 38
  year: 2017
  end-page: 47
  ident: CR37
  article-title: Membrane fouling and wetting in membrane distillation and their mitigation by novel membranes with special wettability
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.01.022
– volume: 25
  start-page: 4192
  year: 2013
  end-page: 4198
  ident: CR39
  article-title: Nanowire-haired inorganic membranes with superhydrophilicity and underwater ultralow adhesive superoleophobicity for high-efficiency oil/water separation
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201301480
– volume: 105
  start-page: 182
  year: 2013
  end-page: 193
  ident: CR2
  article-title: Feasibility evaluation of solar photovoltaic pumping irrigation system based on analysis of dynamic variation of groundwater table
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.11.074
– volume: 9
  start-page: 683
  year: 2018
  ident: CR21
  article-title: Anti-fouling graphene-based membranes for effective water desalination
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-02871-3
– volume: 5
  start-page: 6694
  year: 2013
  end-page: 6703
  ident: CR36
  article-title: Highly hydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membranes via postfabrication grafting of surface-tailored silica nanoparticles
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am401462e
– volume: 10
  start-page: 393
  year: 2016
  ident: 281_CR8
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2016.75
– volume: 114
  start-page: 6936
  year: 2017
  ident: 281_CR13
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1701835114
– volume: 404
  start-page: 79
  year: 2017
  ident: 281_CR14
  publication-title: Desalination
  doi: 10.1016/j.desal.2016.11.001
– volume: 44
  start-page: 2108
  year: 2015
  ident: 281_CR29
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c4cs00352g
– volume: 256
  start-page: 1011
  year: 2018
  ident: 281_CR31
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2017.10.043
– volume: 113
  start-page: 13953
  year: 2016
  ident: 281_CR6
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1613031113
– volume: 565
  start-page: 254
  year: 2018
  ident: 281_CR20
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2018.08.032
– volume: 5
  start-page: 7
  year: 2014
  ident: 281_CR5
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5449
– volume: 5
  start-page: 6694
  year: 2013
  ident: 281_CR36
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am401462e
– volume: 25
  start-page: 4192
  year: 2013
  ident: 281_CR39
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201301480
– volume: 29
  start-page: 678
  year: 2013
  ident: 281_CR41
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2013.03.023
– ident: 281_CR34
– volume: 29
  start-page: 1702590
  year: 2017
  ident: 281_CR33
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201702590
– volume: 6
  start-page: 10103
  year: 2015
  ident: 281_CR9
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10103
– volume: 195
  start-page: 414
  year: 2017
  ident: 281_CR7
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.03.080
– volume: 5
  start-page: 15227
  year: 2017
  ident: 281_CR40
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c7ta03977h
– volume: 452
  start-page: 301
  year: 2008
  ident: 281_CR4
  publication-title: Nature
  doi: 10.1038/nature06599
– volume: 105
  start-page: 182
  year: 2013
  ident: 281_CR2
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.11.074
– volume: 6
  start-page: 323
  year: 2015
  ident: 281_CR26
  publication-title: Membr. Water Treat.
  doi: 10.12989/mwt.2015.6.4.323
– volume: 1
  start-page: 1400099
  year: 2014
  ident: 281_CR38
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201400099
– volume: 546
  start-page: 179
  year: 2018
  ident: 281_CR23
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2017.10.017
– volume: 442
  start-page: 1
  year: 2018
  ident: 281_CR15
  publication-title: Desalination
  doi: 10.1016/j.desal.2018.05.006
– volume: 50
  start-page: 12275
  year: 2016
  ident: 281_CR25
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b03882
– volume: 315
  start-page: 798
  year: 2007
  ident: 281_CR1
  publication-title: Science
  doi: 10.1126/science.1137014
– volume: 29
  start-page: 1603504
  year: 2017
  ident: 281_CR11
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603504
– volume: 9
  start-page: 683
  year: 2018
  ident: 281_CR21
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-02871-3
– volume: 530
  start-page: 42
  year: 2017
  ident: 281_CR22
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2017.02.013
– volume: 1
  start-page: 1600003
  year: 2017
  ident: 281_CR42
  publication-title: Global Challenges
  doi: 10.1002/gch2.201600003
– volume: 80
  start-page: 238
  year: 2017
  ident: 281_CR19
  publication-title: Renew. Sust. Energy Rev.
  doi: 10.1016/j.rser.2017.05.078
– volume: 50
  start-page: 8112
  year: 2016
  ident: 281_CR24
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b02316
– volume: 184
  start-page: 394
  year: 2017
  ident: 281_CR27
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2017.05.021
– ident: 281_CR35
– volume: 11
  start-page: 1177
  year: 2018
  ident: 281_CR18
  publication-title: Environ. Sci. Technol.
  doi: 10.1039/c8ee00291f
– volume: 28
  start-page: 1707134
  year: 2018
  ident: 281_CR32
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201707134
– volume: 25
  start-page: 5799
  year: 2013
  ident: 281_CR28
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201301794
– volume: 11
  start-page: 1510
  year: 2018
  ident: 281_CR10
  publication-title: Environ. Sci. Technol.
  doi: 10.1039/c8ee00220g
– volume: 5
  start-page: 23712
  year: 2017
  ident: 281_CR12
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c7ta04555g
– volume: 127
  start-page: 96
  year: 2017
  ident: 281_CR16
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.10.015
– volume: 112
  start-page: 38
  year: 2017
  ident: 281_CR37
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.01.022
– volume: 191
  start-page: 204
  year: 2017
  ident: 281_CR3
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.01.055
– volume: 6
  start-page: 18799
  year: 2018
  ident: 281_CR17
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c8ta05738a
– volume: 10
  start-page: 13452
  year: 2018
  ident: 281_CR30
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b00271
SSID ssib052472754
ssib047348319
ssib044084216
ssj0000070760
ssib027973114
ssib051367739
Score 2.4988632
Snippet Highlights New concept of solar vapour gap membrane distillation (SVGMD) is based on synergizing of nanochannel-guided water transport, localized heating, and...
HighlightsNew concept of solar vapour gap membrane distillation (SVGMD) is based on synergizing of nanochannel-guided water transport, localized heating, and...
Photothermal membrane distillation (MD) is a promising technology for desalination and water purification. However, solar-thermal conversion suffers from low...
New concept of solar vapour gap membrane distillation (SVGMD) is based on synergizing of nanochannel-guided water transport, localized heating, and membrane...
Abstract Photothermal membrane distillation (MD) is a promising technology for desalination and water purification. However, solar-thermal conversion suffers...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Antifouling
Arrays
Collection
Contaminants
Desalination
Distillation
Distilled water
Energy conversion efficiency
Energy efficiency
Engineering
Fouling
Graphene
Heating
Membrane separation
Membranes
Nanochannels
Nanoscale Science and Technology
Nanotechnology
Nanotechnology and Microengineering
Photothermal conversion
Plasma-made nanostructures
Power efficiency
Seawater
Separation
Solar energy
Transport
Vapors
Water purification
Water yield
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAPEWgICNxorKwE79ybGHbCqlcoFVvluMHrVTSVdke-u8742QfqYBeuOwhdrLRzHjmc2b8DSEfalhggvuWiS5FJmOTmU8psDryDgG70h7PDh9904fH8uupOt1o9YU1YQM98CC4T50NofNC1zFw2UXfqgQ_VhkA-lbIjN4XYt7GZgosqTbYkWmdH8S2ynKDpUYip0uzJjJTSFxm1vyYqpYQ18dAOwBpgyms0qlOCKYN18sUKZ7Dw67NWN_VMgjXgolJkCu9ACYA9m755Z0cbAlt-0_I4xGT0t1BFk_Jg9Q_I482mAqfk3iAxNbgF2HWlb9hexD8It3tF-csY0_1_if9jptkeuLn8Dh64Of0KP2CrTjc8gX9yMVQdEfxwy_F6hI6K8cO6ayQWOAJ0BfkeH_24_MhGxs0sKAsX7Dag26Eyr7JNgcRVQAwpblMJiavWh9ME6RJSGNndFTSdEhWn7U3xoqgePOSbPWXfXpFKIgtNF7U3AYrpW87bXPmicsAl2NWFeFLibowspdjE40Lt-JdLkpwoASHSnCiIh9Xt8wH6o5_Td5DNa0mIut2uQC26EZbdPfZYkW2l0p2oyv47QB_GcDE4N3-PAwetamtbWVF3q-GYY1j4gZ0dHkNc5REjpzW2oqYie1M3nc60p-fFbZwYwxuoyqys7Sy9Z__VRyv_4c43pCHNa6JUvyzTbYWV9fpLUC4RfeurNZbx804Vw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdge4EHxKcIDGQknkAWdmLHzhNaoduEtAkBQ3uLHH9sk0Zauu6B_54710nXCSZVfYidJvWd786-8-9HyNsSJpjgtmGiC55JX0VmQ3Cs9LzDgF3VFs8OHx7VB8fyy4k6yRtul7mscrCJyVD7mcM98g_g-eFjTCM_zn8zZI3C7Gqm0LhLtsEEG1h8bU-mR1-_DRpVamRmWucJkV5ZXkOrkYjtUq0BzRQCmOk1TqYqJfj37HBXAbXGVFZirBOC1ZrXQ6oUz-MhezPWeTUM3LZgYsPZJU6AjUD2ZhnmjVxscnF7D8mDHJvS3ZUyPSJ3Qv-Y3L-GWPiE-H0EuAb7CL0W9g-bgBP0dLdfnrOI3Or9Kf2Oi2X6087h5-i-ndPD8AuW5HDLZ7QnF6viO4obwBSrTOg0HT-k0wRmgSdBn5LjvemPTwcsEzUwpwxfstI61wkVbRVNdMIrB0FVzWXQPljVWKcrJ3VAODtdeyV1h6D1sbZaG-EUr56RrX7Wh-eEwrC5yoqSG2ektE1Xmxh54NLBZR9VQfgwoq3LKOZIpnHRjvjLSQgtCKFFIbSiIO_GW-YrCI_bOk9QTGNHRN9OF2aL0zZP5rYz8H-tqEvvuOy8bVSAL6M0LD6NkLEgO4OQ22wSLltQXw2xMVi5fzeP-l2QN2MzzHVM4ICMZlfQR0nEymmMKYje0J2N991s6c_PEmq41hqXUwV5P2jZ-uH_HY4Xt7_qS3KvRG1P5T07ZGu5uAqvIEhbdq_zTPwLQTQwYg
  priority: 102
  providerName: ProQuest
Title Graphene Array-Based Anti-fouling Solar Vapour Gap Membrane Distillation with High Energy Efficiency
URI https://link.springer.com/article/10.1007/s40820-019-0281-1
https://www.proquest.com/docview/2237575006
https://www.proquest.com/docview/2322328894
https://www.proquest.com/docview/2542361988
https://pubmed.ncbi.nlm.nih.gov/PMC7770882
https://doaj.org/article/b8ccba162dc04bda95eda9857716814f
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdge4EHxKcIG5WReAJZshM7dh7bru2EtAkBQ3uLHNsZk0Zadd3D_nvu3KRZpoHESyLFlzT12feRu_sdIR9T2GCC24KJKngmfVYzG4JjqecVGuwqt1g7fHKaH5_JL-fqvK3jvu6y3buQZJTUu2I3bI2MSVQFA50oGLg8-wpcd1zW0x5yPNXYjKkPDWJHZXkHoEYinEvWY5gpxCzTPTSmSiWo9FbHbm1ojdGr2KROCJZrnnfR0YfeaqDfYhuAge16P_PyXvg1arX5c_KsNUfpeLt-XpBHoXlJnt4BKXxF_AIxrUEkAtXa3rIJ6D1Px83mktXYTr25oN_RP6Y_7QoeRxd2RU_Cb_DC4ZYjFCFX23w7it98KSaW0FmsOKSziF-BxZ-vydl89mN6zNreDMwpwzcstc5VQtU2q03thFcO7Kicy6B9sKqwTmdO6oAIdjr3SuoKcerr3GpthFM8e0P2mmUT3hIK0-YyK1JunJHSFlVu6poHLh1c9rVKCO9mtHQtcDn2z7gqd5DLkQklMKFEJpQiIZ92t6y2qB3_Ip4gm3aECLgdLyzXF2W7f8vKwP-1Ik-947LytlABDkZp8DeNkHVCDjsml60UuC7B9NJgDoNge3gYhGmWGlPIhHzYDcP2xpgN8Gh5AzRKIjxOYUxC9GDtDN53ONJc_opA4Vpr9KAS8rlbZf2P_3U63v0X9QF5kuLijwk-h2Rvs74J78FM21Qj8tjMFyOyP54cTeZwnsxOv34bxc2Kx3w6ih9A_gDX2TD2
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfGOAAHxKcIDDASXEAWdmLHzgGhjXXt2LoLG9otc2xnTBpp6Tqh_VP8jbznJu06wW6Toh5i56N-n8577_cIeZuCgAluCyaq4Jn0Wc1sCI6lnlfosKvcYu3wcC8fHMivh-pwhfzpamEwrbLTiVFR-5HDb-QfwfLDYUwhP49_MewahdHVroXGjC12wsVv2LKdfdreBPq-S9Ot3v6XAWu7CjCnDJ-y1DpXCVXbrDa1E1458AByLoP2warCOp05qQNir-ncK6krRFivc6u1EU7xDO57i9yWWVagRJmtfse_qcY-UIuoJDZzlpewcSQiyWQL-DSFcGl6gcqpUniQbs37zH3XGDiL_fGEYLnmeReYxeo_7BWNWWUFAydBMLFkWmMHgiW3-WrS55XIbzSoWw_I_dYTpusz1n1IVkLziNy7hI_4mPg-wmmDNoZZE3vBNsDkerreTE9YjZ3cm2P6Dbfm9Lsdw-1o347pMPyswP4Guona63SW6kfxczPFnBbai8WOtBehM7Du9Ak5uBECPiWrzagJzwiFZXOZFSk3zkhpiyo3dc0Dlw5O-1olhHcrWroWMx1bd5yWc7TnSIQSiFAiEUqRkPfzS8YzwJDrJm8gmeYTEes7nhhNjstWdZSVgf9rRZ56x2XlbaEC_BilYatrhKwTstYRuWwV0FkJwqLBEwed-u_huTQl5M18GDQLhouARqNzmKMkIvMUxiREL_HO0vsujzQnPyJGudYaN28J-dBx2eLh_12O59e_6mtyZ7A_3C13t_d2XpC7KXJ-TCxaI6vTyXl4Ce7htHoVZZKSo5tWAn8BRsBrmg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQkRAcEE8RKGAkTiCrdmLHzrGP3ZZHKyQo6i1y_Ggrlexqmx7498zksWmqgsRlD_FkN-vxvDIz3xDyPgUBE9wWTFTBM-mzyGwIjqWeV-iwq9xi7_DhUX5wLD-fqJN-zunlUO0-pCS7ngZEaaqbraWPW-vGNxyTjAVVBQP7KBiEP3chUBFY07c7wo-nGgczjWlCnK4sr4HVSIR2yUY8M4X4ZXqEyVSpBPPe29vOn9aYyWoH1gnBcs3zIVN621NNbF07EmDix96swryRim0t3PwRedi7pnS7O0uPyZ1QPyEPrgEWPiV-H_GtQT0C1cr-ZjtgAz3drptzFnG0en1Kv2OsTH_aJXwd3bdLehh-QUQOt-yhOrnoau8ovv-lWGRCZ233IZ21WBbYCPqMHM9nP3YPWD-ngTlleMNS61wlVLRZNNEJrxz4VDmXQftgVWGdzpzUAdHsdO6V1BVi1sfcam2EUzx7TjbqRR1eEArb5jIrUm6ckdIWVW5i5IFLB5d9VAnhw46Wrgcxx1kaF-UafrllQglMKJEJpUjIh_Utyw7B41_EO8imNSGCb7cXFqvTspflsjLwf63IU--4rLwtVIAPozTEnkbImJDNgcllrxEuS3DDNLjGoORuXwbFmqXGFDIh79bLIOqYvwEeLa6ARkmEyimMSYienJ3J805X6vOzFjRca43RVEI-Dqds_PG_bsfL_6J-S-5925uXXz8dfXlF7qcoB23dzybZaFZX4TV4b031ppXQP2mMMmM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graphene+Array-Based+Anti-fouling+Solar+Vapour+Gap+Membrane+Distillation+with+High+Energy+Efficiency&rft.jtitle=Nano-micro+letters&rft.au=Gong%2C+Biyao&rft.au=Yang%2C+Huachao&rft.au=Wu%2C+Shenghao&rft.au=Xiong%2C+Guoping&rft.date=2019-12-01&rft.pub=Springer+Singapore&rft.issn=2311-6706&rft.eissn=2150-5551&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1007%2Fs40820-019-0281-1&rft.externalDocID=10_1007_s40820_019_0281_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon