Graphene Array-Based Anti-fouling Solar Vapour Gap Membrane Distillation with High Energy Efficiency
Highlights New concept of solar vapour gap membrane distillation (SVGMD) is based on synergizing of nanochannel-guided water transport, localized heating, and membrane separation from feed solution. First-time introduction of the gap enables long-term stability and non-fouling membrane. SVGMD exhibi...
Saved in:
Published in | Nano-micro letters Vol. 11; no. 1; pp. 1 - 14 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Singapore
01.12.2019
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Highlights
New concept of solar vapour gap membrane distillation (SVGMD) is based on synergizing of nanochannel-guided water transport, localized heating, and membrane separation from feed solution.
First-time introduction of the gap enables long-term stability and non-fouling membrane.
SVGMD exhibits a solar-water energy efficiency higher than state-of-the-art solar vapour systems.
Photothermal membrane distillation (MD) is a promising technology for desalination and water purification. However, solar-thermal conversion suffers from low energy efficiency (a typical solar-water efficiency of ~ 50%), while complex modifications are needed to reduce membrane fouling. Here, we demonstrate a new concept of solar vapour gap membrane distillation (SVGMD) synergistically combining self-guided water transport, localized heating, and separation of membrane from feed solution. A free-standing, multifunctional light absorber based on graphene array is custom-designed to locally heat the thin water layer transporting through graphene nanochannels. The as-generated vapour passes through a gap and condenses, while salt/contaminants are rejected before reaching the membrane. The high solar-water efficiency (73.4% at 1 sun), clean water collection ratio (82.3%), excellent anti-fouling performance, and stable permeate flux in continuous operation over 72 h are simultaneously achieved. Meanwhile, SVGMD inherits the advantage of MD in microorganism removal and water collection, enabling the solar-water efficiency 3.5 times higher compared to state-of-the-art solar vapour systems. A scaled system to treat oil/seawater mixtures under natural sunlight is developed with a purified water yield of 92.8 kg m
−2
day
−1
. Our results can be applied for diverse mixed-phase feeds, leading to the next-generation solar-driven MD technology. |
---|---|
AbstractList | Highlights
New concept of solar vapour gap membrane distillation (SVGMD) is based on synergizing of nanochannel-guided water transport, localized heating, and membrane separation from feed solution.
First-time introduction of the gap enables long-term stability and non-fouling membrane.
SVGMD exhibits a solar-water energy efficiency higher than state-of-the-art solar vapour systems.
Photothermal membrane distillation (MD) is a promising technology for desalination and water purification. However, solar-thermal conversion suffers from low energy efficiency (a typical solar-water efficiency of ~ 50%), while complex modifications are needed to reduce membrane fouling. Here, we demonstrate a new concept of solar vapour gap membrane distillation (SVGMD) synergistically combining self-guided water transport, localized heating, and separation of membrane from feed solution. A free-standing, multifunctional light absorber based on graphene array is custom-designed to locally heat the thin water layer transporting through graphene nanochannels. The as-generated vapour passes through a gap and condenses, while salt/contaminants are rejected before reaching the membrane. The high solar-water efficiency (73.4% at 1 sun), clean water collection ratio (82.3%), excellent anti-fouling performance, and stable permeate flux in continuous operation over 72 h are simultaneously achieved. Meanwhile, SVGMD inherits the advantage of MD in microorganism removal and water collection, enabling the solar-water efficiency 3.5 times higher compared to state-of-the-art solar vapour systems. A scaled system to treat oil/seawater mixtures under natural sunlight is developed with a purified water yield of 92.8 kg m
−2
day
−1
. Our results can be applied for diverse mixed-phase feeds, leading to the next-generation solar-driven MD technology. Abstract Photothermal membrane distillation (MD) is a promising technology for desalination and water purification. However, solar-thermal conversion suffers from low energy efficiency (a typical solar-water efficiency of ~ 50%), while complex modifications are needed to reduce membrane fouling. Here, we demonstrate a new concept of solar vapour gap membrane distillation (SVGMD) synergistically combining self-guided water transport, localized heating, and separation of membrane from feed solution. A free-standing, multifunctional light absorber based on graphene array is custom-designed to locally heat the thin water layer transporting through graphene nanochannels. The as-generated vapour passes through a gap and condenses, while salt/contaminants are rejected before reaching the membrane. The high solar-water efficiency (73.4% at 1 sun), clean water collection ratio (82.3%), excellent anti-fouling performance, and stable permeate flux in continuous operation over 72 h are simultaneously achieved. Meanwhile, SVGMD inherits the advantage of MD in microorganism removal and water collection, enabling the solar-water efficiency 3.5 times higher compared to state-of-the-art solar vapour systems. A scaled system to treat oil/seawater mixtures under natural sunlight is developed with a purified water yield of 92.8 kg m−2 day−1. Our results can be applied for diverse mixed-phase feeds, leading to the next-generation solar-driven MD technology. HighlightsNew concept of solar vapour gap membrane distillation (SVGMD) is based on synergizing of nanochannel-guided water transport, localized heating, and membrane separation from feed solution.First-time introduction of the gap enables long-term stability and non-fouling membrane.SVGMD exhibits a solar-water energy efficiency higher than state-of-the-art solar vapour systems. Photothermal membrane distillation (MD) is a promising technology for desalination and water purification. However, solar-thermal conversion suffers from low energy efficiency (a typical solar-water efficiency of ~ 50%), while complex modifications are needed to reduce membrane fouling. Here, we demonstrate a new concept of solar vapour gap membrane distillation (SVGMD) synergistically combining self-guided water transport, localized heating, and separation of membrane from feed solution. A free-standing, multifunctional light absorber based on graphene array is custom-designed to locally heat the thin water layer transporting through graphene nanochannels. The as-generated vapour passes through a gap and condenses, while salt/contaminants are rejected before reaching the membrane. The high solar-water efficiency (73.4% at 1 sun), clean water collection ratio (82.3%), excellent anti-fouling performance, and stable permeate flux in continuous operation over 72 h are simultaneously achieved. Meanwhile, SVGMD inherits the advantage of MD in microorganism removal and water collection, enabling the solar-water efficiency 3.5 times higher compared to state-of-the-art solar vapour systems. A scaled system to treat oil/seawater mixtures under natural sunlight is developed with a purified water yield of 92.8 kg m-2 day-1. Our results can be applied for diverse mixed-phase feeds, leading to the next-generation solar-driven MD technology.Photothermal membrane distillation (MD) is a promising technology for desalination and water purification. However, solar-thermal conversion suffers from low energy efficiency (a typical solar-water efficiency of ~ 50%), while complex modifications are needed to reduce membrane fouling. Here, we demonstrate a new concept of solar vapour gap membrane distillation (SVGMD) synergistically combining self-guided water transport, localized heating, and separation of membrane from feed solution. A free-standing, multifunctional light absorber based on graphene array is custom-designed to locally heat the thin water layer transporting through graphene nanochannels. The as-generated vapour passes through a gap and condenses, while salt/contaminants are rejected before reaching the membrane. The high solar-water efficiency (73.4% at 1 sun), clean water collection ratio (82.3%), excellent anti-fouling performance, and stable permeate flux in continuous operation over 72 h are simultaneously achieved. Meanwhile, SVGMD inherits the advantage of MD in microorganism removal and water collection, enabling the solar-water efficiency 3.5 times higher compared to state-of-the-art solar vapour systems. A scaled system to treat oil/seawater mixtures under natural sunlight is developed with a purified water yield of 92.8 kg m-2 day-1. Our results can be applied for diverse mixed-phase feeds, leading to the next-generation solar-driven MD technology. New concept of solar vapour gap membrane distillation (SVGMD) is based on synergizing of nanochannel-guided water transport, localized heating, and membrane separation from feed solution. First-time introduction of the gap enables long-term stability and non-fouling membrane. SVGMD exhibits a solar-water energy efficiency higher than state-of-the-art solar vapour systems. Photothermal membrane distillation (MD) is a promising technology for desalination and water purification. However, solar-thermal conversion suffers from low energy efficiency (a typical solar-water efficiency of ~ 50%), while complex modifications are needed to reduce membrane fouling. Here, we demonstrate a new concept of solar vapour gap membrane distillation (SVGMD) synergistically combining self-guided water transport, localized heating, and separation of membrane from feed solution. A free-standing, multifunctional light absorber based on graphene array is custom-designed to locally heat the thin water layer transporting through graphene nanochannels. The as-generated vapour passes through a gap and condenses, while salt/contaminants are rejected before reaching the membrane. The high solar-water efficiency (73.4% at 1 sun), clean water collection ratio (82.3%), excellent anti-fouling performance, and stable permeate flux in continuous operation over 72 h are simultaneously achieved. Meanwhile, SVGMD inherits the advantage of MD in microorganism removal and water collection, enabling the solar-water efficiency 3.5 times higher compared to state-of-the-art solar vapour systems. A scaled system to treat oil/seawater mixtures under natural sunlight is developed with a purified water yield of 92.8 kg m −2 day −1 . Our results can be applied for diverse mixed-phase feeds, leading to the next-generation solar-driven MD technology. |
ArticleNumber | 51 |
Author | Ostrikov, Kostya Xiong, Guoping Yang, Huachao Bo, Zheng Yan, Jianhua Gong, Biyao Wu, Shenghao Cen, Kefa |
Author_xml | – sequence: 1 givenname: Biyao surname: Gong fullname: Gong, Biyao organization: State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University – sequence: 2 givenname: Huachao surname: Yang fullname: Yang, Huachao organization: State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University – sequence: 3 givenname: Shenghao surname: Wu fullname: Wu, Shenghao organization: State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University – sequence: 4 givenname: Guoping surname: Xiong fullname: Xiong, Guoping organization: Department of Mechanical Engineering, University of Nevada – sequence: 5 givenname: Jianhua surname: Yan fullname: Yan, Jianhua organization: State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University – sequence: 6 givenname: Kefa surname: Cen fullname: Cen, Kefa organization: State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University – sequence: 7 givenname: Zheng surname: Bo fullname: Bo, Zheng email: bozh@zju.edu.cn organization: State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University – sequence: 8 givenname: Kostya surname: Ostrikov fullname: Ostrikov, Kostya organization: Joint CSIRO-QUT Sustainable Processes and Devices Laboratory, School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology |
BookMark | eNp9Uk1v3CAURFWqJk3zA3qz1EsvbnkYDL5U2qbbTaRUPfTjip4x9hJ5wQVvqv33JXGqKpEaCQGCmeHNY16SIx-8JeQ10HdAqXyfOFWMlhSakjIFJTwjJwwELYUQcJT3FUBZS1ofk7OUXEsF45JJwV-Q44pDJRslTki3iThtrbfFKkY8lB8x2a5Y-dmVfdiPzg_FtzBiLH7iFPax2OBUfLG7NmKmfHJpduOIswu--O3mbXHhhm2x9jYOh2Ld9844683hFXne45js2f16Sn58Xn8_vyivvm4uz1dXpRGKziVDY1oQPVa96g10wtSsqim3srMoGjSyMlxaChRk3Qku2zo76muUUoERtDoll4tuF_BaT9HtMB50QKfvDkIcNMbZmdHqVuW3EGrWGcrbDhth86SElFAr4H3W-rBoTft2Zztj_RxxfCD68Ma7rR7CjZZSUqVYFnh7LxDDr71Ns965ZGxul7dhnzQTPLuDRqkMffMIep177XOrNKtYHko1_EkUq6SQgtI6o-SCMjGkFG2vjZvvfihX6UYNVN_GRy_x0Tk--jY-GjITHjH_mn2KwxZOylg_2Pivpv-T_gC8M9av |
CitedBy_id | crossref_primary_10_1016_j_xcrp_2021_100330 crossref_primary_10_1002_adfm_202101036 crossref_primary_10_1002_ente_202300430 crossref_primary_10_1016_j_memsci_2024_122967 crossref_primary_10_1016_j_watres_2021_117154 crossref_primary_10_1017_jfm_2021_817 crossref_primary_10_1021_acsami_3c08201 crossref_primary_10_1007_s40820_023_01034_4 crossref_primary_10_1016_j_nanoen_2020_105444 crossref_primary_10_1039_D1TA05058C crossref_primary_10_1016_j_nanoen_2021_106339 crossref_primary_10_1007_s10973_020_09940_0 crossref_primary_10_1007_s11431_022_2332_3 crossref_primary_10_1002_smtd_202001200 crossref_primary_10_1021_acsami_2c15212 crossref_primary_10_1016_j_desal_2021_115460 crossref_primary_10_3390_pr12122681 crossref_primary_10_1016_j_mtener_2024_101588 crossref_primary_10_1016_j_pmatsci_2024_101309 crossref_primary_10_1021_acsami_0c07921 crossref_primary_10_1021_acs_est_4c10047 crossref_primary_10_1016_j_desal_2024_118078 crossref_primary_10_1021_acssuschemeng_9b06160 crossref_primary_10_3390_membranes13040437 crossref_primary_10_1016_j_applthermaleng_2021_117557 crossref_primary_10_1016_j_cej_2021_129822 crossref_primary_10_1039_D0NR08956G crossref_primary_10_1016_j_carbon_2020_09_033 crossref_primary_10_1007_s10973_020_09494_1 crossref_primary_10_3390_membranes13020163 crossref_primary_10_1016_j_chemosphere_2020_128871 crossref_primary_10_1063_5_0080876 crossref_primary_10_1007_s11705_023_2339_3 crossref_primary_10_1016_j_jclepro_2022_135737 crossref_primary_10_1016_j_jece_2022_107974 crossref_primary_10_1016_j_watres_2023_120807 crossref_primary_10_1021_acsami_0c17154 crossref_primary_10_1039_D0TA11724B crossref_primary_10_3390_membranes12090899 crossref_primary_10_1007_s40820_021_00748_7 crossref_primary_10_1016_j_desal_2022_116044 crossref_primary_10_1039_D2NR04857D crossref_primary_10_1016_j_jclepro_2023_137335 crossref_primary_10_1016_j_nanoen_2020_105353 crossref_primary_10_3390_membranes14070160 crossref_primary_10_1016_j_desal_2024_117534 crossref_primary_10_1016_j_powtec_2019_11_039 crossref_primary_10_3390_en15165990 crossref_primary_10_3389_fenrg_2022_828594 crossref_primary_10_1021_acsomega_3c01114 crossref_primary_10_1016_j_colsurfa_2022_129018 crossref_primary_10_1016_j_desal_2022_116063 crossref_primary_10_1016_j_nanoen_2023_109180 crossref_primary_10_1002_advs_201903478 crossref_primary_10_1016_j_watres_2021_117299 crossref_primary_10_1016_j_ccr_2022_214794 crossref_primary_10_1016_j_susmat_2020_e00181 crossref_primary_10_1016_j_rser_2020_110547 crossref_primary_10_1016_j_enconman_2021_114111 crossref_primary_10_1016_j_solener_2022_10_042 crossref_primary_10_1016_j_carbon_2021_04_077 crossref_primary_10_1016_j_desal_2022_115726 crossref_primary_10_1039_D3GC02805D crossref_primary_10_1016_j_memsci_2021_119188 crossref_primary_10_1039_D1QM00101A crossref_primary_10_1016_j_memsci_2021_119500 crossref_primary_10_3390_en15218051 crossref_primary_10_1016_j_jclepro_2022_135100 crossref_primary_10_1016_j_seppur_2022_122348 crossref_primary_10_1016_j_memsci_2020_118413 crossref_primary_10_1016_j_desal_2024_117320 crossref_primary_10_5004_dwt_2022_28460 crossref_primary_10_1016_j_mtsust_2023_100319 crossref_primary_10_1021_acssuschemeng_3c00819 crossref_primary_10_1016_j_wasman_2025_02_024 crossref_primary_10_1016_j_memsci_2023_122113 crossref_primary_10_1016_j_matpr_2021_09_346 crossref_primary_10_1016_j_solener_2023_112187 crossref_primary_10_1021_acsami_4c09383 crossref_primary_10_1002_adfm_202212245 crossref_primary_10_1021_acsami_4c13768 crossref_primary_10_1016_j_solener_2022_05_038 crossref_primary_10_3390_membranes13050483 crossref_primary_10_1007_s11051_020_04819_5 crossref_primary_10_1039_D1RA00278C crossref_primary_10_1016_j_seppur_2023_125103 crossref_primary_10_1002_adsu_202000004 crossref_primary_10_1039_D1TA03014K |
Cites_doi | 10.1016/j.seppur.2017.05.021 10.1002/admi.201400099 10.1016/j.desal.2018.05.006 10.1016/j.memsci.2017.02.013 10.1016/j.memsci.2018.08.032 10.1016/j.snb.2017.10.043 10.1016/j.rser.2017.05.078 10.1038/nphoton.2016.75 10.1016/j.desal.2016.11.001 10.1039/c7ta03977h 10.1002/adfm.201707134 10.1016/j.apenergy.2017.01.055 10.1038/ncomms10103 10.1073/pnas.1613031113 10.1021/acs.est.6b02316 10.1039/c8ee00220g 10.1073/pnas.1701835114 10.1016/j.watres.2017.10.015 10.1016/j.jmst.2013.03.023 10.1126/science.1137014 10.1039/c7ta04555g 10.1039/c4cs00352g 10.1038/nature06599 10.1016/j.apenergy.2017.03.080 10.1038/ncomms5449 10.1002/adma.201702590 10.1021/acs.est.6b03882 10.1002/adma.201301794 10.1039/c8ee00291f 10.1002/adma.201603504 10.1039/c8ta05738a 10.12989/mwt.2015.6.4.323 10.1016/j.memsci.2017.10.017 10.1021/acsami.8b00271 10.1002/gch2.201600003 10.1016/j.watres.2017.01.022 10.1002/adma.201301480 10.1016/j.apenergy.2012.11.074 10.1038/s41467-018-02871-3 10.1021/am401462e |
ContentType | Journal Article |
Copyright | The Author(s) 2019 Copyright Springer Nature B.V. 2019 Nano-Micro Letters is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2019 – notice: Copyright Springer Nature B.V. 2019 – notice: Nano-Micro Letters is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S P5Z P62 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
DOI | 10.1007/s40820-019-0281-1 |
DatabaseName | Springer Nature OA/Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2150-5551 |
EndPage | 14 |
ExternalDocumentID | oai_doaj_org_article_b8ccba162dc04bda95eda9857716814f PMC7770882 10_1007_s40820_019_0281_1 |
GroupedDBID | -02 -0B -SB -S~ 0R~ 4.4 5VR 5VS 8FE 8FG 92H 92I 92M 92R 93N 9D9 9DB AAFWJ AAJSJ AAKKN AAXDM ABDBF ABEEZ ABJCF ACACY ACGFS ACIWK ACUHS ACULB ADBBV ADINQ ADMLS AEGXH AENEX AFGXO AFKRA AFPKN AFUIB AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS ASPBG AVWKF BAPOH BCNDV BENPR BGLVJ C1A C24 C6C CAJEB CCEZO CCPQU CDRFL D1I EBLON EBS EJD ESX FA0 GROUPED_DOAJ GX1 HCIFZ IAO IHR IPNFZ ITC JUIAU KB. KQ8 KWQ L6V M7S MM. M~E OK1 P62 PDBOC PGMZT PIMPY PROAC PTHSS Q-- R-B RIG RNS RPM RSV RT2 SOJ T8R TCJ TGT TR2 TUS U1F U1G U5B U5L ~LU AASML AAYXX CITATION PHGZM PHGZT PQGLB ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c580t-2accb15fa3f8fc1d5c623604e7dea59ac73c47e010176d547b6472f6a7781c503 |
IEDL.DBID | C24 |
ISSN | 2311-6706 2150-5551 |
IngestDate | Wed Aug 27 01:19:32 EDT 2025 Thu Aug 21 18:26:55 EDT 2025 Thu Jul 10 17:48:05 EDT 2025 Fri Jul 25 11:16:13 EDT 2025 Fri Jul 25 11:02:06 EDT 2025 Tue Jul 01 00:55:43 EDT 2025 Thu Apr 24 23:03:35 EDT 2025 Fri Feb 21 02:35:51 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Water purification Plasma-made nanostructures Photothermal conversion Solar energy |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c580t-2accb15fa3f8fc1d5c623604e7dea59ac73c47e010176d547b6472f6a7781c503 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://link.springer.com/10.1007/s40820-019-0281-1 |
PMID | 34137985 |
PQID | 2322328894 |
PQPubID | 2044332 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b8ccba162dc04bda95eda9857716814f pubmedcentral_primary_oai_pubmedcentral_nih_gov_7770882 proquest_miscellaneous_2542361988 proquest_journals_2322328894 proquest_journals_2237575006 crossref_citationtrail_10_1007_s40820_019_0281_1 crossref_primary_10_1007_s40820_019_0281_1 springer_journals_10_1007_s40820_019_0281_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20191200 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 20191200 |
PublicationDecade | 2010 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Heidelberg |
PublicationTitle | Nano-micro letters |
PublicationTitleAbbrev | Nano-Micro Lett |
PublicationYear | 2019 |
Publisher | Springer Singapore Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Singapore – name: Springer Nature B.V – name: SpringerOpen |
References | Boo, Lee, Elimelech (CR24) 2016; 50 Sathish Kumar, Arthanareeswaran, Paul, Hyang (CR26) 2015; 6 Yue, Lior (CR3) 2017; 191 Deshmukh, Boo, Karanikola, Lin, Straub, Tong, Warsinger, Elimelech (CR18) 2018; 11 Li, Xu, Tang, Zhou, Zhu, Zhu, Zhu (CR6) 2016; 113 Politano, Argurio, Profio, Sanna, Cupolillo, Chakraborty, Arafat, Curcio (CR11) 2017; 29 Wu, Jiang, Ghim, Singamaneni, Jun (CR17) 2018; 6 Bae, Kang, Cho, Park, Kim, Padilla (CR9) 2015; 6 CR35 González, Amigo, Suárez (CR19) 2017; 80 CR34 Ren, Tang, Guan, Wang, Yang (CR33) 2017; 29 Liu, Song, Ji, Li, Cheney (CR42) 2017; 1 Ghasemi, Ni, Marconnet, Loomis, Yerci, Miljkovic, Chen (CR5) 2014; 5 Teng, Lu, Ren, Zhu, Wan, Jiang (CR38) 2014; 1 Seo, Pineda, Woo, Xie, Murdock (CR21) 2018; 9 Ni, Zandavi, Javid Svetlana, Boriskina, Coopera, Chen (CR10) 2018; 11 Jiang, Tang, Park-Lee, Hess, Breedveld (CR27) 2017; 184 Huang, Pei, Jiang, Hu (CR15) 2018; 442 Kashyap, Al-Bayati, Sajadi (CR40) 2017; 5 Dongare, Alabastri, Pedersen, Zodrow, Hogan (CR13) 2017; 114 Wu, Zodrow, Szemraj, Li (CR12) 2017; 5 Zhang, Zhang, Shi, Wang, Jin, Jiang (CR39) 2013; 25 Hou, Zhu, Xu, Liu (CR41) 2013; 29 Fujiwara, Kikuchi (CR16) 2017; 127 Boo, Lee, Elimelech (CR25) 2016; 50 Rezaei, Warsinger, Lienhard, Samhabera (CR22) 2017; 530 Wang, He, Liu, Cheng, Zhu (CR7) 2017; 195 Hou, Wang, Wang, Wang, Lin (CR23) 2018; 546 Zhou, Tan, Wang, Xu, Yuan, Can, Zhu, Zhu (CR8) 2016; 10 Shannon, Bohn, Elimelech, Georgiadis, Mariñas, Mayes (CR4) 2008; 452 Wang, Liu, Yu, Lee, Wang, Zheng, Wang, Yun, Lee (CR30) 2018; 10 Bo, Yuan, Mao, Chen, Yan, Cen (CR31) 2018; 256 Liang, Kang, Tiraferri, Giannelis, Huang (CR36) 2013; 5 Lewis (CR1) 2007; 315 Tan, Wang, Han, Tanis-Kanbur, Pranava, Chew (CR20) 2018; 565 Bo, Zhu, Ma, Wen, Shuai (CR28) 2013; 25 Gao, Liu, Zhang, Yan, Ban, Xu, Qin (CR2) 2013; 105 Bo, Mao, Han, Cen, Chen, Ostrikov (CR29) 2015; 44 Fujiwara (CR14) 2017; 404 Li, Liu, Zhao, Chen, Dai (CR32) 2018; 28 Wang, Lin (CR37) 2017; 112 Z Bo (281_CR31) 2018; 256 X Wu (281_CR17) 2018; 6 M Fujiwara (281_CR14) 2017; 404 F Zhang (281_CR39) 2013; 25 K Bae (281_CR9) 2015; 6 DH Seo (281_CR21) 2018; 9 T Li (281_CR32) 2018; 28 PD Dongare (281_CR13) 2017; 114 A Deshmukh (281_CR18) 2018; 11 L Zhou (281_CR8) 2016; 10 C Boo (281_CR25) 2016; 50 X Wang (281_CR7) 2017; 195 L Huang (281_CR15) 2018; 442 J Hou (281_CR41) 2013; 29 NS Lewis (281_CR1) 2007; 315 XQ Li (281_CR6) 2016; 113 A Politano (281_CR11) 2017; 29 Z Wang (281_CR37) 2017; 112 R Sathish Kumar (281_CR26) 2015; 6 D Hou (281_CR23) 2018; 546 Z Bo (281_CR29) 2015; 44 Z Bo (281_CR28) 2013; 25 X Gao (281_CR2) 2013; 105 J Wu (281_CR12) 2017; 5 D González (281_CR19) 2017; 80 V Kashyap (281_CR40) 2017; 5 281_CR35 L Jiang (281_CR27) 2017; 184 281_CR34 S Liang (281_CR36) 2013; 5 MA Shannon (281_CR4) 2008; 452 M Fujiwara (281_CR16) 2017; 127 Z Liu (281_CR42) 2017; 1 H Ghasemi (281_CR5) 2014; 5 M Rezaei (281_CR22) 2017; 530 C Boo (281_CR24) 2016; 50 C Teng (281_CR38) 2014; 1 H Ren (281_CR33) 2017; 29 YZ Tan (281_CR20) 2018; 565 M Wang (281_CR30) 2018; 10 T Yue (281_CR3) 2017; 191 G Ni (281_CR10) 2018; 11 |
References_xml | – volume: 184 start-page: 394 year: 2017 end-page: 403 ident: CR27 article-title: Fabrication of non-fluorinated hydrophilic-oleophobic stainless steel mesh for oil-water separation publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2017.05.021 – volume: 1 start-page: 1400099 year: 2014 ident: CR38 article-title: Underwater self-cleaning PEDOT-PSS hydrogel mesh for effective separation of corrosive and hot oil/water mixtures publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201400099 – volume: 442 start-page: 1 year: 2018 end-page: 7 ident: CR15 article-title: Water desalination under one sun using graphene-based material modified PTFE membrane publication-title: Desalination doi: 10.1016/j.desal.2018.05.006 – volume: 530 start-page: 42 year: 2017 end-page: 52 ident: CR22 article-title: Wetting prevention in membrane distillation through superhydrophobicity and recharging an air layer on the membrane surface publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2017.02.013 – volume: 565 start-page: 254 year: 2018 end-page: 265 ident: CR20 article-title: Photothermal-enhanced and fouling-resistant membrane for solar-assisted membrane distillation publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2018.08.032 – volume: 256 start-page: 1011 year: 2018 end-page: 1020 ident: CR31 article-title: Decoration of vertical graphene with tin dioxide nanoparticles for highly sensitive room temperature formaldehyde sensing publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2017.10.043 – volume: 80 start-page: 238 year: 2017 end-page: 259 ident: CR19 article-title: Membrane distillation: perspectives for sustainable and improved desalination publication-title: Renew. Sust. Energy Rev. doi: 10.1016/j.rser.2017.05.078 – ident: CR35 – volume: 10 start-page: 393 year: 2016 end-page: 398 ident: CR8 article-title: 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination publication-title: Nat. Photonics doi: 10.1038/nphoton.2016.75 – volume: 404 start-page: 79 year: 2017 end-page: 86 ident: CR14 article-title: Water desalination using visible light by disperse red 1 modified PTFE membrane publication-title: Desalination doi: 10.1016/j.desal.2016.11.001 – volume: 5 start-page: 15227 year: 2017 end-page: 15234 ident: CR40 article-title: A flexible anti-clogging graphite film for scalable solar desalination by heat localization publication-title: J. Mater. Chem. A doi: 10.1039/c7ta03977h – volume: 28 start-page: 1707134 year: 2018 ident: CR32 article-title: Scalable and highly efficient mesoporous wood-based solar steam generation device: localized heat, rapid water transport publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201707134 – volume: 191 start-page: 204 year: 2017 end-page: 222 ident: CR3 article-title: Exergo economic analysis of solar-assisted hybrid power generation systems integrated with thermochemical fuel conversion publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.01.055 – volume: 6 start-page: 10103 year: 2015 ident: CR9 article-title: Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation publication-title: Nat. Commun. doi: 10.1038/ncomms10103 – volume: 113 start-page: 13953 year: 2016 end-page: 13958 ident: CR6 article-title: Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1613031113 – volume: 50 start-page: 8112 year: 2016 end-page: 8119 ident: CR24 article-title: Engineering surface energy and nanostructure of microporous films for expanded membrane distillation applications publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b02316 – volume: 11 start-page: 1510 year: 2018 end-page: 1519 ident: CR10 article-title: A salt-rejecting floating solar still for low-cost desalination publication-title: Environ. Sci. Technol. doi: 10.1039/c8ee00220g – volume: 114 start-page: 6936 year: 2017 end-page: 6941 ident: CR13 article-title: Nanophotonics-enabled solar membrane distillation for off-grid water purification publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1701835114 – volume: 127 start-page: 96 year: 2017 end-page: 103 ident: CR16 article-title: Solar desalination of seawater using double-dye-modified PTFE membrane publication-title: Water Res. doi: 10.1016/j.watres.2017.10.015 – volume: 29 start-page: 678 year: 2013 end-page: 684 ident: CR41 article-title: Anticorrosion performance of epoxy coatings containing small amount of inherently conducting PEDOT/PSS on hull steel in seawater publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2013.03.023 – volume: 315 start-page: 798 year: 2007 end-page: 801 ident: CR1 article-title: Toward cost-effective solar energy use publication-title: Science doi: 10.1126/science.1137014 – volume: 5 start-page: 23712 year: 2017 end-page: 23719 ident: CR12 article-title: Photothermal nanocomposite membranes for direct solar membrane distillation publication-title: J. Mater. Chem. A doi: 10.1039/c7ta04555g – volume: 44 start-page: 2108 year: 2015 end-page: 2121 ident: CR29 article-title: Emerging energy and environmental applications of vertically-oriented graphenes publication-title: Chem. Soc. Rev. doi: 10.1039/c4cs00352g – volume: 452 start-page: 301 year: 2008 end-page: 310 ident: CR4 article-title: Science and technology for water purification in the coming decades publication-title: Nature doi: 10.1038/nature06599 – volume: 195 start-page: 414 year: 2017 end-page: 425 ident: CR7 article-title: Solar steam generation through bio-inspired interface heating of broadband-absorbing plasmonic membranes publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.03.080 – volume: 5 start-page: 7 year: 2014 ident: CR5 article-title: Solar steam generation by heat localization publication-title: Nat. Commun. doi: 10.1038/ncomms5449 – volume: 29 start-page: 1702590 year: 2017 ident: CR33 article-title: Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion publication-title: Adv. Mater. doi: 10.1002/adma.201702590 – volume: 50 start-page: 12275 year: 2016 end-page: 12282 ident: CR25 article-title: Omniphobic polyvinylidene fluoride (PVDF) membrane for desalination of shale gas produced water by membrane distillation publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b03882 – volume: 25 start-page: 5799 year: 2013 ident: CR28 article-title: Vertically oriented graphene bridging active-layer/current-collector interface for ultrahigh rate supercapacitors publication-title: Adv. Mater. doi: 10.1002/adma.201301794 – volume: 11 start-page: 1177 year: 2018 end-page: 1196 ident: CR18 article-title: Membrane distillation at the water-energy nexus: limits, opportunities, and challenges publication-title: Environ. Sci. Technol. doi: 10.1039/c8ee00291f – volume: 29 start-page: 1603504 year: 2017 ident: CR11 article-title: Photothermal membrane distillation for seawater desalination publication-title: Adv. Mater. doi: 10.1002/adma.201603504 – volume: 6 start-page: 18799 year: 2018 end-page: 18807 ident: CR17 article-title: A localized heating with a photothermal polydopamine coating facilitates a novel membrane distillation process publication-title: J. Mater. Chem. A doi: 10.1039/c8ta05738a – volume: 6 start-page: 323 year: 2015 end-page: 337 ident: CR26 article-title: Modification methods of polyethersulfone membranes for minimizing fouling—review publication-title: Membr. Water Treat. doi: 10.12989/mwt.2015.6.4.323 – ident: CR34 – volume: 546 start-page: 179 year: 2018 end-page: 187 ident: CR23 article-title: Composite membrane with electrospun multiscale-textured surface for robust oil-fouling resistance in membrane distillation publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2017.10.017 – volume: 10 start-page: 13452 year: 2018 end-page: 13461 ident: CR30 article-title: ZnO nanorod array modified PVDF membrane with superhydrophobic surface for vacuum membrane distillation application publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b00271 – volume: 1 start-page: 1600003 year: 2017 ident: CR42 article-title: Extremely cost-effective and efficient solar vapour generation under nonconcentrated illumination using thermally isolated black paper publication-title: Global Challenges doi: 10.1002/gch2.201600003 – volume: 112 start-page: 38 year: 2017 end-page: 47 ident: CR37 article-title: Membrane fouling and wetting in membrane distillation and their mitigation by novel membranes with special wettability publication-title: Water Res. doi: 10.1016/j.watres.2017.01.022 – volume: 25 start-page: 4192 year: 2013 end-page: 4198 ident: CR39 article-title: Nanowire-haired inorganic membranes with superhydrophilicity and underwater ultralow adhesive superoleophobicity for high-efficiency oil/water separation publication-title: Adv. Mater. doi: 10.1002/adma.201301480 – volume: 105 start-page: 182 year: 2013 end-page: 193 ident: CR2 article-title: Feasibility evaluation of solar photovoltaic pumping irrigation system based on analysis of dynamic variation of groundwater table publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.11.074 – volume: 9 start-page: 683 year: 2018 ident: CR21 article-title: Anti-fouling graphene-based membranes for effective water desalination publication-title: Nat. Commun. doi: 10.1038/s41467-018-02871-3 – volume: 5 start-page: 6694 year: 2013 end-page: 6703 ident: CR36 article-title: Highly hydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membranes via postfabrication grafting of surface-tailored silica nanoparticles publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am401462e – volume: 10 start-page: 393 year: 2016 ident: 281_CR8 publication-title: Nat. Photonics doi: 10.1038/nphoton.2016.75 – volume: 114 start-page: 6936 year: 2017 ident: 281_CR13 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1701835114 – volume: 404 start-page: 79 year: 2017 ident: 281_CR14 publication-title: Desalination doi: 10.1016/j.desal.2016.11.001 – volume: 44 start-page: 2108 year: 2015 ident: 281_CR29 publication-title: Chem. Soc. Rev. doi: 10.1039/c4cs00352g – volume: 256 start-page: 1011 year: 2018 ident: 281_CR31 publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2017.10.043 – volume: 113 start-page: 13953 year: 2016 ident: 281_CR6 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1613031113 – volume: 565 start-page: 254 year: 2018 ident: 281_CR20 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2018.08.032 – volume: 5 start-page: 7 year: 2014 ident: 281_CR5 publication-title: Nat. Commun. doi: 10.1038/ncomms5449 – volume: 5 start-page: 6694 year: 2013 ident: 281_CR36 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am401462e – volume: 25 start-page: 4192 year: 2013 ident: 281_CR39 publication-title: Adv. Mater. doi: 10.1002/adma.201301480 – volume: 29 start-page: 678 year: 2013 ident: 281_CR41 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2013.03.023 – ident: 281_CR34 – volume: 29 start-page: 1702590 year: 2017 ident: 281_CR33 publication-title: Adv. Mater. doi: 10.1002/adma.201702590 – volume: 6 start-page: 10103 year: 2015 ident: 281_CR9 publication-title: Nat. Commun. doi: 10.1038/ncomms10103 – volume: 195 start-page: 414 year: 2017 ident: 281_CR7 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.03.080 – volume: 5 start-page: 15227 year: 2017 ident: 281_CR40 publication-title: J. Mater. Chem. A doi: 10.1039/c7ta03977h – volume: 452 start-page: 301 year: 2008 ident: 281_CR4 publication-title: Nature doi: 10.1038/nature06599 – volume: 105 start-page: 182 year: 2013 ident: 281_CR2 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.11.074 – volume: 6 start-page: 323 year: 2015 ident: 281_CR26 publication-title: Membr. Water Treat. doi: 10.12989/mwt.2015.6.4.323 – volume: 1 start-page: 1400099 year: 2014 ident: 281_CR38 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201400099 – volume: 546 start-page: 179 year: 2018 ident: 281_CR23 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2017.10.017 – volume: 442 start-page: 1 year: 2018 ident: 281_CR15 publication-title: Desalination doi: 10.1016/j.desal.2018.05.006 – volume: 50 start-page: 12275 year: 2016 ident: 281_CR25 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b03882 – volume: 315 start-page: 798 year: 2007 ident: 281_CR1 publication-title: Science doi: 10.1126/science.1137014 – volume: 29 start-page: 1603504 year: 2017 ident: 281_CR11 publication-title: Adv. Mater. doi: 10.1002/adma.201603504 – volume: 9 start-page: 683 year: 2018 ident: 281_CR21 publication-title: Nat. Commun. doi: 10.1038/s41467-018-02871-3 – volume: 530 start-page: 42 year: 2017 ident: 281_CR22 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2017.02.013 – volume: 1 start-page: 1600003 year: 2017 ident: 281_CR42 publication-title: Global Challenges doi: 10.1002/gch2.201600003 – volume: 80 start-page: 238 year: 2017 ident: 281_CR19 publication-title: Renew. Sust. Energy Rev. doi: 10.1016/j.rser.2017.05.078 – volume: 50 start-page: 8112 year: 2016 ident: 281_CR24 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b02316 – volume: 184 start-page: 394 year: 2017 ident: 281_CR27 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2017.05.021 – ident: 281_CR35 – volume: 11 start-page: 1177 year: 2018 ident: 281_CR18 publication-title: Environ. Sci. Technol. doi: 10.1039/c8ee00291f – volume: 28 start-page: 1707134 year: 2018 ident: 281_CR32 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201707134 – volume: 25 start-page: 5799 year: 2013 ident: 281_CR28 publication-title: Adv. Mater. doi: 10.1002/adma.201301794 – volume: 11 start-page: 1510 year: 2018 ident: 281_CR10 publication-title: Environ. Sci. Technol. doi: 10.1039/c8ee00220g – volume: 5 start-page: 23712 year: 2017 ident: 281_CR12 publication-title: J. Mater. Chem. A doi: 10.1039/c7ta04555g – volume: 127 start-page: 96 year: 2017 ident: 281_CR16 publication-title: Water Res. doi: 10.1016/j.watres.2017.10.015 – volume: 112 start-page: 38 year: 2017 ident: 281_CR37 publication-title: Water Res. doi: 10.1016/j.watres.2017.01.022 – volume: 191 start-page: 204 year: 2017 ident: 281_CR3 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.01.055 – volume: 6 start-page: 18799 year: 2018 ident: 281_CR17 publication-title: J. Mater. Chem. A doi: 10.1039/c8ta05738a – volume: 10 start-page: 13452 year: 2018 ident: 281_CR30 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b00271 |
SSID | ssib052472754 ssib047348319 ssib044084216 ssj0000070760 ssib027973114 ssib051367739 |
Score | 2.4988632 |
Snippet | Highlights
New concept of solar vapour gap membrane distillation (SVGMD) is based on synergizing of nanochannel-guided water transport, localized heating, and... HighlightsNew concept of solar vapour gap membrane distillation (SVGMD) is based on synergizing of nanochannel-guided water transport, localized heating, and... Photothermal membrane distillation (MD) is a promising technology for desalination and water purification. However, solar-thermal conversion suffers from low... New concept of solar vapour gap membrane distillation (SVGMD) is based on synergizing of nanochannel-guided water transport, localized heating, and membrane... Abstract Photothermal membrane distillation (MD) is a promising technology for desalination and water purification. However, solar-thermal conversion suffers... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Antifouling Arrays Collection Contaminants Desalination Distillation Distilled water Energy conversion efficiency Energy efficiency Engineering Fouling Graphene Heating Membrane separation Membranes Nanochannels Nanoscale Science and Technology Nanotechnology Nanotechnology and Microengineering Photothermal conversion Plasma-made nanostructures Power efficiency Seawater Separation Solar energy Transport Vapors Water purification Water yield |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAPEWgICNxorKwE79ybGHbCqlcoFVvluMHrVTSVdke-u8742QfqYBeuOwhdrLRzHjmc2b8DSEfalhggvuWiS5FJmOTmU8psDryDgG70h7PDh9904fH8uupOt1o9YU1YQM98CC4T50NofNC1zFw2UXfqgQ_VhkA-lbIjN4XYt7GZgosqTbYkWmdH8S2ynKDpUYip0uzJjJTSFxm1vyYqpYQ18dAOwBpgyms0qlOCKYN18sUKZ7Dw67NWN_VMgjXgolJkCu9ACYA9m755Z0cbAlt-0_I4xGT0t1BFk_Jg9Q_I482mAqfk3iAxNbgF2HWlb9hexD8It3tF-csY0_1_if9jptkeuLn8Dh64Of0KP2CrTjc8gX9yMVQdEfxwy_F6hI6K8cO6ayQWOAJ0BfkeH_24_MhGxs0sKAsX7Dag26Eyr7JNgcRVQAwpblMJiavWh9ME6RJSGNndFTSdEhWn7U3xoqgePOSbPWXfXpFKIgtNF7U3AYrpW87bXPmicsAl2NWFeFLibowspdjE40Lt-JdLkpwoASHSnCiIh9Xt8wH6o5_Td5DNa0mIut2uQC26EZbdPfZYkW2l0p2oyv47QB_GcDE4N3-PAwetamtbWVF3q-GYY1j4gZ0dHkNc5REjpzW2oqYie1M3nc60p-fFbZwYwxuoyqys7Sy9Z__VRyv_4c43pCHNa6JUvyzTbYWV9fpLUC4RfeurNZbx804Vw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdge4EHxKcIDGQknkAWdmLHzhNaoduEtAkBQ3uLHH9sk0Zauu6B_54710nXCSZVfYidJvWd786-8-9HyNsSJpjgtmGiC55JX0VmQ3Cs9LzDgF3VFs8OHx7VB8fyy4k6yRtul7mscrCJyVD7mcM98g_g-eFjTCM_zn8zZI3C7Gqm0LhLtsEEG1h8bU-mR1-_DRpVamRmWucJkV5ZXkOrkYjtUq0BzRQCmOk1TqYqJfj37HBXAbXGVFZirBOC1ZrXQ6oUz-MhezPWeTUM3LZgYsPZJU6AjUD2ZhnmjVxscnF7D8mDHJvS3ZUyPSJ3Qv-Y3L-GWPiE-H0EuAb7CL0W9g-bgBP0dLdfnrOI3Or9Kf2Oi2X6087h5-i-ndPD8AuW5HDLZ7QnF6viO4obwBSrTOg0HT-k0wRmgSdBn5LjvemPTwcsEzUwpwxfstI61wkVbRVNdMIrB0FVzWXQPljVWKcrJ3VAODtdeyV1h6D1sbZaG-EUr56RrX7Wh-eEwrC5yoqSG2ektE1Xmxh54NLBZR9VQfgwoq3LKOZIpnHRjvjLSQgtCKFFIbSiIO_GW-YrCI_bOk9QTGNHRN9OF2aL0zZP5rYz8H-tqEvvuOy8bVSAL6M0LD6NkLEgO4OQ22wSLltQXw2xMVi5fzeP-l2QN2MzzHVM4ICMZlfQR0nEymmMKYje0J2N991s6c_PEmq41hqXUwV5P2jZ-uH_HY4Xt7_qS3KvRG1P5T07ZGu5uAqvIEhbdq_zTPwLQTQwYg priority: 102 providerName: ProQuest |
Title | Graphene Array-Based Anti-fouling Solar Vapour Gap Membrane Distillation with High Energy Efficiency |
URI | https://link.springer.com/article/10.1007/s40820-019-0281-1 https://www.proquest.com/docview/2237575006 https://www.proquest.com/docview/2322328894 https://www.proquest.com/docview/2542361988 https://pubmed.ncbi.nlm.nih.gov/PMC7770882 https://doaj.org/article/b8ccba162dc04bda95eda9857716814f |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdge4EHxKcIG5WReAJZshM7dh7bru2EtAkBQ3uLHNsZk0Zadd3D_nvu3KRZpoHESyLFlzT12feRu_sdIR9T2GCC24KJKngmfVYzG4JjqecVGuwqt1g7fHKaH5_JL-fqvK3jvu6y3buQZJTUu2I3bI2MSVQFA50oGLg8-wpcd1zW0x5yPNXYjKkPDWJHZXkHoEYinEvWY5gpxCzTPTSmSiWo9FbHbm1ojdGr2KROCJZrnnfR0YfeaqDfYhuAge16P_PyXvg1arX5c_KsNUfpeLt-XpBHoXlJnt4BKXxF_AIxrUEkAtXa3rIJ6D1Px83mktXYTr25oN_RP6Y_7QoeRxd2RU_Cb_DC4ZYjFCFX23w7it98KSaW0FmsOKSziF-BxZ-vydl89mN6zNreDMwpwzcstc5VQtU2q03thFcO7Kicy6B9sKqwTmdO6oAIdjr3SuoKcerr3GpthFM8e0P2mmUT3hIK0-YyK1JunJHSFlVu6poHLh1c9rVKCO9mtHQtcDn2z7gqd5DLkQklMKFEJpQiIZ92t6y2qB3_Ip4gm3aECLgdLyzXF2W7f8vKwP-1Ik-947LytlABDkZp8DeNkHVCDjsml60UuC7B9NJgDoNge3gYhGmWGlPIhHzYDcP2xpgN8Gh5AzRKIjxOYUxC9GDtDN53ONJc_opA4Vpr9KAS8rlbZf2P_3U63v0X9QF5kuLijwk-h2Rvs74J78FM21Qj8tjMFyOyP54cTeZwnsxOv34bxc2Kx3w6ih9A_gDX2TD2 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfGOAAHxKcIDDASXEAWdmLHzgGhjXXt2LoLG9otc2xnTBpp6Tqh_VP8jbznJu06wW6Toh5i56N-n8577_cIeZuCgAluCyaq4Jn0Wc1sCI6lnlfosKvcYu3wcC8fHMivh-pwhfzpamEwrbLTiVFR-5HDb-QfwfLDYUwhP49_MewahdHVroXGjC12wsVv2LKdfdreBPq-S9Ot3v6XAWu7CjCnDJ-y1DpXCVXbrDa1E1458AByLoP2warCOp05qQNir-ncK6krRFivc6u1EU7xDO57i9yWWVagRJmtfse_qcY-UIuoJDZzlpewcSQiyWQL-DSFcGl6gcqpUniQbs37zH3XGDiL_fGEYLnmeReYxeo_7BWNWWUFAydBMLFkWmMHgiW3-WrS55XIbzSoWw_I_dYTpusz1n1IVkLziNy7hI_4mPg-wmmDNoZZE3vBNsDkerreTE9YjZ3cm2P6Dbfm9Lsdw-1o347pMPyswP4Guona63SW6kfxczPFnBbai8WOtBehM7Du9Ak5uBECPiWrzagJzwiFZXOZFSk3zkhpiyo3dc0Dlw5O-1olhHcrWroWMx1bd5yWc7TnSIQSiFAiEUqRkPfzS8YzwJDrJm8gmeYTEes7nhhNjstWdZSVgf9rRZ56x2XlbaEC_BilYatrhKwTstYRuWwV0FkJwqLBEwed-u_huTQl5M18GDQLhouARqNzmKMkIvMUxiREL_HO0vsujzQnPyJGudYaN28J-dBx2eLh_12O59e_6mtyZ7A_3C13t_d2XpC7KXJ-TCxaI6vTyXl4Ce7htHoVZZKSo5tWAn8BRsBrmg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQkRAcEE8RKGAkTiCrdmLHzrGP3ZZHKyQo6i1y_Ggrlexqmx7498zksWmqgsRlD_FkN-vxvDIz3xDyPgUBE9wWTFTBM-mzyGwIjqWeV-iwq9xi7_DhUX5wLD-fqJN-zunlUO0-pCS7ngZEaaqbraWPW-vGNxyTjAVVBQP7KBiEP3chUBFY07c7wo-nGgczjWlCnK4sr4HVSIR2yUY8M4X4ZXqEyVSpBPPe29vOn9aYyWoH1gnBcs3zIVN621NNbF07EmDix96swryRim0t3PwRedi7pnS7O0uPyZ1QPyEPrgEWPiV-H_GtQT0C1cr-ZjtgAz3drptzFnG0en1Kv2OsTH_aJXwd3bdLehh-QUQOt-yhOrnoau8ovv-lWGRCZ233IZ21WBbYCPqMHM9nP3YPWD-ngTlleMNS61wlVLRZNNEJrxz4VDmXQftgVWGdzpzUAdHsdO6V1BVi1sfcam2EUzx7TjbqRR1eEArb5jIrUm6ckdIWVW5i5IFLB5d9VAnhw46Wrgcxx1kaF-UafrllQglMKJEJpUjIh_Utyw7B41_EO8imNSGCb7cXFqvTspflsjLwf63IU--4rLwtVIAPozTEnkbImJDNgcllrxEuS3DDNLjGoORuXwbFmqXGFDIh79bLIOqYvwEeLa6ARkmEyimMSYienJ3J805X6vOzFjRca43RVEI-Dqds_PG_bsfL_6J-S-5925uXXz8dfXlF7qcoB23dzybZaFZX4TV4b031ppXQP2mMMmM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graphene+Array-Based+Anti-fouling+Solar+Vapour+Gap+Membrane+Distillation+with+High+Energy+Efficiency&rft.jtitle=Nano-micro+letters&rft.au=Gong%2C+Biyao&rft.au=Yang%2C+Huachao&rft.au=Wu%2C+Shenghao&rft.au=Xiong%2C+Guoping&rft.date=2019-12-01&rft.pub=Springer+Singapore&rft.issn=2311-6706&rft.eissn=2150-5551&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1007%2Fs40820-019-0281-1&rft.externalDocID=10_1007_s40820_019_0281_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon |