Graphene Array-Based Anti-fouling Solar Vapour Gap Membrane Distillation with High Energy Efficiency

Highlights New concept of solar vapour gap membrane distillation (SVGMD) is based on synergizing of nanochannel-guided water transport, localized heating, and membrane separation from feed solution. First-time introduction of the gap enables long-term stability and non-fouling membrane. SVGMD exhibi...

Full description

Saved in:
Bibliographic Details
Published inNano-micro letters Vol. 11; no. 1; pp. 1 - 14
Main Authors Gong, Biyao, Yang, Huachao, Wu, Shenghao, Xiong, Guoping, Yan, Jianhua, Cen, Kefa, Bo, Zheng, Ostrikov, Kostya
Format Journal Article
LanguageEnglish
Published Singapore Springer Singapore 01.12.2019
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Highlights New concept of solar vapour gap membrane distillation (SVGMD) is based on synergizing of nanochannel-guided water transport, localized heating, and membrane separation from feed solution. First-time introduction of the gap enables long-term stability and non-fouling membrane. SVGMD exhibits a solar-water energy efficiency higher than state-of-the-art solar vapour systems. Photothermal membrane distillation (MD) is a promising technology for desalination and water purification. However, solar-thermal conversion suffers from low energy efficiency (a typical solar-water efficiency of ~ 50%), while complex modifications are needed to reduce membrane fouling. Here, we demonstrate a new concept of solar vapour gap membrane distillation (SVGMD) synergistically combining self-guided water transport, localized heating, and separation of membrane from feed solution. A free-standing, multifunctional light absorber based on graphene array is custom-designed to locally heat the thin water layer transporting through graphene nanochannels. The as-generated vapour passes through a gap and condenses, while salt/contaminants are rejected before reaching the membrane. The high solar-water efficiency (73.4% at 1 sun), clean water collection ratio (82.3%), excellent anti-fouling performance, and stable permeate flux in continuous operation over 72 h are simultaneously achieved. Meanwhile, SVGMD inherits the advantage of MD in microorganism removal and water collection, enabling the solar-water efficiency 3.5 times higher compared to state-of-the-art solar vapour systems. A scaled system to treat oil/seawater mixtures under natural sunlight is developed with a purified water yield of 92.8 kg m −2  day −1 . Our results can be applied for diverse mixed-phase feeds, leading to the next-generation solar-driven MD technology.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2311-6706
2150-5551
2150-5551
DOI:10.1007/s40820-019-0281-1