ROLE of exercise in maintaining the integrity of the neuromuscular junction

ABSTRACT Physical activity plays an important role in preventing chronic disease in adults and the elderly. Exercise has beneficial effects on the nervous system, including at the neuromuscular junction (NMJ). Exercise causes hypertrophy of NMJs and improves recovery from peripheral nerve injuries,...

Full description

Saved in:
Bibliographic Details
Published inMuscle & nerve Vol. 49; no. 3; pp. 315 - 324
Main Authors Nishimune, Hiroshi, Stanford, John A., Mori, Yasuo
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.03.2014
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT Physical activity plays an important role in preventing chronic disease in adults and the elderly. Exercise has beneficial effects on the nervous system, including at the neuromuscular junction (NMJ). Exercise causes hypertrophy of NMJs and improves recovery from peripheral nerve injuries, whereas decreased physical activity causes degenerative changes in NMJs. Recent studies have begun to elucidate molecular mechanisms underlying the beneficial effects of exercise. These mechanisms involve Bassoon, neuregulin‐1, peroxisome proliferator–activated receptor gamma coactivator 1α, insulin‐like growth factor‐1, glial cell line–derived neurotrophic factor, neurotrophin 4, Homer, and nuclear factor of activated T cells c1. For example, NMJ denervation and active zone decreases have been observed in aged NMJs, but these age‐dependent degenerative changes can be ameliorated by exercise. In this review we assess the effects of exercise on the maintenance and regeneration of NMJs and highlight recent insights into the molecular mechanisms underlying these exercise effects. Muscle Nerve 49:315–324, 2014
AbstractList ABSTRACT Physical activity plays an important role in preventing chronic disease in adults and the elderly. Exercise has beneficial effects on the nervous system, including at the neuromuscular junction (NMJ). Exercise causes hypertrophy of NMJs and improves recovery from peripheral nerve injuries, whereas decreased physical activity causes degenerative changes in NMJs. Recent studies have begun to elucidate molecular mechanisms underlying the beneficial effects of exercise. These mechanisms involve Bassoon, neuregulin‐1, peroxisome proliferator–activated receptor gamma coactivator 1α, insulin‐like growth factor‐1, glial cell line–derived neurotrophic factor, neurotrophin 4, Homer, and nuclear factor of activated T cells c1. For example, NMJ denervation and active zone decreases have been observed in aged NMJs, but these age‐dependent degenerative changes can be ameliorated by exercise. In this review we assess the effects of exercise on the maintenance and regeneration of NMJs and highlight recent insights into the molecular mechanisms underlying these exercise effects. Muscle Nerve 49 :315–324, 2014
Physical activity plays an important role in preventing chronic disease in adults and the elderly. Exercise has beneficial effects on the nervous system, including at the neuromuscular junction (NMJ). Exercise causes hypertrophy of NMJs and improves recovery from peripheral nerve injuries, whereas decreased physical activity causes degenerative changes in NMJs. Recent studies have begun to elucidate molecular mechanisms underlying the beneficial effects of exercise. These mechanisms involve Bassoon, neuregulin-1, peroxisome proliferator-activated receptor gamma coactivator 1α, insulin-like growth factor-1, glial cell line-derived neurotrophic factor, neurotrophin 4, Homer, and nuclear factor of activated T cells c1. For example, NMJ denervation and active zone decreases have been observed in aged NMJs, but these age-dependent degenerative changes can be ameliorated by exercise. In this review we assess the effects of exercise on the maintenance and regeneration of NMJs and highlight recent insights into the molecular mechanisms underlying these exercise effects.
Physical activity plays an important role in preventing chronic disease in adults and the elderly. Exercise has beneficial effects on the nervous system, including at the neuromuscular junction (NMJ). Exercise causes hypertrophy of NMJs and improves recovery from peripheral nerve injuries, whereas decreased physical activity causes degenerative changes in NMJs. Recent studies have begun to elucidate molecular mechanisms underlying the beneficial effects of exercise. These mechanisms involve Bassoon, neuregulin-1, peroxisome proliferator-activated receptor gamma coactivator 1α, Insulin-like growth factor-1, glial cell line-derived neurotrophic factor, neurotrophin 4, Homer, and nuclear factor of activated T cells c1. For example, NMJ denervation and active zone decreases have been observed in aged NMJs, but these age-dependent degenerative changes can be ameliorated by exercise. This review will discuss the effects of exercise on the maintenance and regeneration of NMJs and will highlight recent insights into the molecular mechanisms underlying these exercise effects.
ABSTRACT Physical activity plays an important role in preventing chronic disease in adults and the elderly. Exercise has beneficial effects on the nervous system, including at the neuromuscular junction (NMJ). Exercise causes hypertrophy of NMJs and improves recovery from peripheral nerve injuries, whereas decreased physical activity causes degenerative changes in NMJs. Recent studies have begun to elucidate molecular mechanisms underlying the beneficial effects of exercise. These mechanisms involve Bassoon, neuregulin‐1, peroxisome proliferator–activated receptor gamma coactivator 1α, insulin‐like growth factor‐1, glial cell line–derived neurotrophic factor, neurotrophin 4, Homer, and nuclear factor of activated T cells c1. For example, NMJ denervation and active zone decreases have been observed in aged NMJs, but these age‐dependent degenerative changes can be ameliorated by exercise. In this review we assess the effects of exercise on the maintenance and regeneration of NMJs and highlight recent insights into the molecular mechanisms underlying these exercise effects. Muscle Nerve 49:315–324, 2014
Physical activity plays an important role in preventing chronic disease in adults and the elderly. Exercise has beneficial effects on the nervous system, including at the neuromuscular junction (NMJ). Exercise causes hypertrophy of NMJs and improves recovery from peripheral nerve injuries, whereas decreased physical activity causes degenerative changes in NMJs. Recent studies have begun to elucidate molecular mechanisms underlying the beneficial effects of exercise. These mechanisms involve Bassoon, neuregulin-1, peroxisome proliferator-activated receptor gamma coactivator 1[alpha], insulin-like growth factor-1, glial cell line-derived neurotrophic factor, neurotrophin 4, Homer, and nuclear factor of activated T cells c1. For example, NMJ denervation and active zone decreases have been observed in aged NMJs, but these age-dependent degenerative changes can be ameliorated by exercise. In this review we assess the effects of exercise on the maintenance and regeneration of NMJs and highlight recent insights into the molecular mechanisms underlying these exercise effects. Muscle Nerve 49:315-324, 2014 [PUBLICATION ABSTRACT]
Physical activity plays an important role in preventing chronic disease in adults and the elderly. Exercise has beneficial effects on the nervous system, including at the neuromuscular junction (NMJ). Exercise causes hypertrophy of NMJs and improves recovery from peripheral nerve injuries, whereas decreased physical activity causes degenerative changes in NMJs. Recent studies have begun to elucidate molecular mechanisms underlying the beneficial effects of exercise. These mechanisms involve Bassoon, neuregulin-1, peroxisome proliferator-activated receptor gamma coactivator 1[alpha], insulin-like growth factor-1, glial cell line-derived neurotrophic factor, neurotrophin 4, Homer, and nuclear factor of activated T cells c1. For example, NMJ denervation and active zone decreases have been observed in aged NMJs, but these age-dependent degenerative changes can be ameliorated by exercise. In this review we assess the effects of exercise on the maintenance and regeneration of NMJs and highlight recent insights into the molecular mechanisms underlying these exercise effects. Muscle Nerve 49:315-324, 2014
Author Nishimune, Hiroshi
Stanford, John A.
Mori, Yasuo
AuthorAffiliation 2 Department of Molecular & Integrative Physiology, University of Kansas School of Medicine, Kansas City, KS, USA
3 Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto, Japan
1 Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS, USA
AuthorAffiliation_xml – name: 3 Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto, Japan
– name: 2 Department of Molecular & Integrative Physiology, University of Kansas School of Medicine, Kansas City, KS, USA
– name: 1 Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS, USA
Author_xml – sequence: 1
  givenname: Hiroshi
  surname: Nishimune
  fullname: Nishimune, Hiroshi
  email: hnishimune@kumc.edu
  organization: Department of Anatomy and Cell Biology, University of Kansas School of Medicine, 3901 Rainbow Boulevard, MS 3051, HLSIC Room 2073, Kansas, 66160, Kansas City, USA
– sequence: 2
  givenname: John A.
  surname: Stanford
  fullname: Stanford, John A.
  organization: Department of Molecular and Integrative Physiology, University of Kansas School of Medicine, Kansas, Kansas City, USA
– sequence: 3
  givenname: Yasuo
  surname: Mori
  fullname: Mori, Yasuo
  organization: Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Katsura, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24122772$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1P3DAQhq2KqizbHvoHqki9lEPATvyVS6UKUUpZQIIierO8zmTxNrGpnVD23-OwsGorVephNNLMM6898-6gLecdIPSW4D2CcbHfDXGvoLhiL9CE4ErklFVyC00woTLnZfV9G-3EuMQYE8nFK7RdUFIUQhQTdHJxPjvMfJPBPQRjI2TWZZ22rk9h3SLrb8ZSD4tg-9UIjgUHQ_DpVTO0OmTLwZneevcavWx0G-HNU56iq8-H3w6-5LPzo-ODT7PcMIlZLikVWACZG6CElLVogNSGCEJ5wXEtNQhGU6euqNRClg0mwDSr5yU1DS95OUUf17q3w7yD2oDrg27VbbCdDivltVV_dpy9UQt_pyiWnHKaBD48CQT_c4DYq85GA22rHfghKsJKKgvB_welVUUYYRQn9P1f6NIPwaVLjJQkCUrbTNHumjLBxxig2fybYDW6qdJd1aObiX33-6Ib8tm-BOyvgV-2hdW_ldTp1eWzZL6esLGH-82EDj8UF6Vg6vrsSH2lF_T6kp-os_IBel-5qg
CODEN MUNEDE
CitedBy_id crossref_primary_10_1113_JP284749
crossref_primary_10_1002_mus_27360
crossref_primary_10_3389_fnana_2016_00006
crossref_primary_10_1134_S1819712418040049
crossref_primary_10_1007_s12031_020_01522_x
crossref_primary_10_1101_cshperspect_a029785
crossref_primary_10_1161_CIRCRESAHA_121_318242
crossref_primary_10_3389_fnmol_2018_00308
crossref_primary_10_3389_fnmol_2021_810919
crossref_primary_10_1186_s40798_017_0107_y
crossref_primary_10_1016_j_mad_2018_06_005
crossref_primary_10_1016_j_neures_2017_11_014
crossref_primary_10_1002_jcsm_12496
crossref_primary_10_1002_jcsm_13189
crossref_primary_10_1007_s40520_024_02781_z
crossref_primary_10_3389_fnut_2021_633987
crossref_primary_10_1016_j_jelekin_2023_102771
crossref_primary_10_7600_jpfsm_6_89
crossref_primary_10_1186_s13395_016_0110_x
crossref_primary_10_1113_JP281365
crossref_primary_10_3390_cells9040893
crossref_primary_10_3390_ijms24043730
crossref_primary_10_1016_j_neulet_2020_135304
crossref_primary_10_3390_cells12242804
crossref_primary_10_1007_s00421_020_04337_1
crossref_primary_10_3177_jnsv_70_273
crossref_primary_10_1159_000524843
crossref_primary_10_1038_s41581_022_00675_9
crossref_primary_10_1002_jcsm_13173
crossref_primary_10_1111_apha_13630
crossref_primary_10_1113_JP283381
crossref_primary_10_3390_ijms22094577
crossref_primary_10_18632_aging_203336
crossref_primary_10_3390_biomedicines12051017
crossref_primary_10_1007_s10389_017_0789_0
crossref_primary_10_3390_ijms22158058
crossref_primary_10_1212_NXG_0000000000200102
crossref_primary_10_1002_jcsm_12720
crossref_primary_10_1007_s11914_019_00522_0
crossref_primary_10_3390_ijms19113558
crossref_primary_10_32708_uutfd_833931
crossref_primary_10_1002_ar_24092
crossref_primary_10_1080_17461391_2020_1761076
crossref_primary_10_3389_fnut_2023_1284497
crossref_primary_10_1002_jcsm_12318
crossref_primary_10_3389_fphys_2019_00449
crossref_primary_10_3390_cells11071150
crossref_primary_10_1016_j_exger_2021_111469
crossref_primary_10_1016_j_neurobiolaging_2021_01_012
crossref_primary_10_1186_s13104_015_1644_4
crossref_primary_10_1016_j_neurobiolaging_2024_01_010
crossref_primary_10_1113_JP279291
crossref_primary_10_1186_s12937_015_0073_5
crossref_primary_10_1016_j_cophys_2018_05_007
crossref_primary_10_1017_S1431927621012253
crossref_primary_10_29252_shefa_8_2_39
crossref_primary_10_1249_MSS_0000000000002286
crossref_primary_10_1016_j_exger_2021_111465
crossref_primary_10_3389_fncel_2023_1226194
crossref_primary_10_1007_s10522_015_9627_3
crossref_primary_10_1007_s00394_020_02302_4
crossref_primary_10_1152_japplphysiol_00563_2017
crossref_primary_10_1007_s00018_021_03821_x
crossref_primary_10_3390_nu15081853
crossref_primary_10_1111_nyas_13521
crossref_primary_10_1002_jcp_26594
crossref_primary_10_1007_s13311_015_0399_x
crossref_primary_10_1007_s00418_014_1273_3
crossref_primary_10_1101_cshperspect_a029793
crossref_primary_10_1139_apnm_2018_0862
crossref_primary_10_1016_j_arr_2022_101810
crossref_primary_10_1113_JP286232
crossref_primary_10_1113_JP285143
crossref_primary_10_1152_ajpcell_00453_2019
crossref_primary_10_3389_fnagi_2017_00205
crossref_primary_10_3389_fnagi_2014_00208
crossref_primary_10_3390_medicina59111940
crossref_primary_10_1016_j_nutres_2018_02_006
crossref_primary_10_1007_s40520_016_0619_1
crossref_primary_10_1016_j_arr_2015_05_001
crossref_primary_10_1016_j_jshs_2023_10_006
crossref_primary_10_1016_j_cophys_2019_02_004
crossref_primary_10_1177_1352458514556301
crossref_primary_10_1007_s11033_020_05610_4
Cites_doi 10.1073/pnas.1005940107
10.1073/pnas.78.11.7210
10.1007/BF00123364
10.1007/s00125-009-1420-x
10.1074/jbc.M111.331751
10.1126/science.276.5312.599
10.1111/j.1469-7793.2003.00247.x
10.1016/S0092-8674(00)80533-4
10.1002/1097-4598(200010)23:10<1576::AID-MUS15>3.0.CO;2-J
10.1016/j.neuroscience.2010.11.016
10.1523/JNEUROSCI.10-03-00894.1990
10.1152/japplphysiol.01161.2002
10.1002/cne.22764
10.2131/jts.34.445
10.1002/(SICI)1098-2396(199609)24:1<1::AID-SYN1>3.0.CO;2-A
10.1023/B:JURE.0000009968.60331.86
10.1152/japplphysiol.00545.2005
10.1089/neu.2010.1594
10.1523/JNEUROSCI.3771-10.2011
10.1007/BF00174949
10.1096/fj.11-186049
10.1073/pnas.1002220107
10.1016/0896-6273(93)90326-M
10.1126/science.1350109
10.1002/cne.21975
10.1016/S0896-6273(00)80964-2
10.1073/pnas.0705070104
10.1152/ajpendo.00448.2009
10.1016/j.neuron.2010.10.027
10.1038/374258a0
10.1146/annurev.cellbio.16.1.521
10.1152/japplphysiol.00901.2010
10.1152/physiolgenomics.00042.2009
10.1038/339055a0
10.1242/jeb.079590
10.1152/ajpcell.00487.2002
10.1083/jcb.200307101
10.3727/000000005783992115
10.1126/science.1181046
10.1152/physiolgenomics.90282.2008
10.1016/0896-6273(94)90414-6
10.1152/japplphysiol.00860.2011
10.1136/jmg.2008.063693
10.1128/MCB.01601-07
10.1139/h98-019
10.1111/j.1469-7793.1999.533ae.x
10.1016/0896-6273(90)90336-E
10.1083/jcb.68.3.752
10.2337/diabetes.53.suppl_3.S59
10.1152/ajpendo.90562.2008
10.1523/JNEUROSCI.15-07-04796.1995
10.1016/j.neulet.2006.05.036
10.1371/journal.pone.0038029
10.1371/journal.pone.0051066
10.2337/diabetes.52.12.2874
10.1038/nature01844
10.1111/j.1469-7793.2000.t01-1-00221.x
10.1083/jcb.83.2.357
10.1002/mus.10558
10.1038/338229a0
10.1038/360753a0
10.1126/science.7973664
10.1002/(SICI)1097-0177(200005)218:1<94::AID-DVDY8>3.0.CO;2-Z
10.1113/jphysiol.1971.sp009528
10.1038/363266a0
10.1523/JNEUROSCI.1255-09.2009
10.1152/physiolgenomics.00257.2006
10.1016/0896-6273(95)90173-6
10.1101/gad.1525107
10.1038/nature03112
10.1007/s12035-011-8216-y
10.1152/ajpendo.00467.2004
10.1016/j.cell.2012.10.050
10.1152/japplphysiol.00073.2002
10.1111/j.1749-6632.1971.tb30750.x
10.1152/jappl.1989.67.4.1409
10.1002/mus.21819
10.1113/jphysiol.1984.sp015059
10.1002/syn.10001
10.1523/JNEUROSCI.4663-10.2011
10.1016/S0896-6273(00)80983-6
10.1016/j.neuroscience.2011.05.070
10.1006/bbrc.2000.3134
10.1007/BF01186990
10.1111/j.1471-4159.2010.06965.x
10.1007/BF01637652
10.1073/pnas.0437991100
10.1111/j.1532-5415.2005.53467.x
10.1006/bbrc.2000.3073
10.1002/ajmg.a.30310
10.1038/360755a0
10.1074/jbc.M110.101311
10.1113/jphysiol.2010.189860
10.1126/stke.2442004re11
10.1038/360757a0
10.1016/j.aanat.2011.02.013
10.1111/j.1471-4159.2009.06080.x
10.1083/jcb.136.4.871
10.1016/S0092-8674(03)00716-5
10.1111/j.1471-4159.2004.02564.x
10.1126/science.7770776
10.1113/jphysiol.2002.030924
10.1042/BST0310236
10.1523/JNEUROSCI.09-02-00639.1989
10.1038/372519a0
10.1152/jappl.1997.83.1.59
10.1016/S0896-6273(00)80873-9
10.1152/ajpcell.00196.2005
10.1016/j.bbr.2009.02.020
10.1080/00207450590882172
10.1042/BJ20082055
10.1371/journal.pone.0034640
10.1523/JNEUROSCI.21-16-06136.2001
10.1038/nn1904
10.1073/pnas.1209318109
10.1007/BF01181487
10.1038/373344a0
10.1096/fj.01-0544fje
10.1016/0012-1606(87)90467-2
10.1113/jphysiol.1983.sp014721
10.1038/373341a0
10.1002/mus.1215
10.1073/pnas.89.8.3330
10.1016/j.neuron.2010.10.026
10.1083/jcb.200407021
10.1016/0896-6273(91)90301-F
10.1016/S0168-0102(98)00026-1
10.1016/S0031-9384(99)00248-6
10.1093/hmg/ddh284
10.1016/j.bbr.2011.09.027
10.1074/jbc.M309068200
10.1126/science.7839148
10.1113/jphysiol.2009.179507
10.1523/JNEUROSCI.10-08-02660.1990
10.1002/ana.410220203
10.1111/j.1471-4159.2004.02719.x
10.1073/pnas.80.24.7636
10.1002/mus.10511
10.1523/JNEUROSCI.07-11-03654.1987
10.1097/WNR.0b013e32834e7deb
10.1016/j.cell.2008.06.051
10.1038/nature07206
10.1073/pnas.1002307107
10.1523/JNEUROSCI.2953-11.2011
ContentType Journal Article
Copyright Copyright © 2013 Wiley Periodicals, Inc.
Copyright_xml – notice: Copyright © 2013 Wiley Periodicals, Inc.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7T5
7TK
7TM
7TS
7U7
7U9
C1K
H94
K9.
NAPCQ
7X8
5PM
DOI 10.1002/mus.24095
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Physical Education Index
Toxicology Abstracts
Virology and AIDS Abstracts
Environmental Sciences and Pollution Management
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Nursing & Allied Health Premium
Virology and AIDS Abstracts
Toxicology Abstracts
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Neurosciences Abstracts
Physical Education Index
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE


Nursing & Allied Health Premium
Neurosciences Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1097-4598
EndPage 324
ExternalDocumentID 3218587211
10_1002_mus_24095
24122772
MUS24095
ark_67375_WNG_J4R4WS6K_N
Genre reviewArticle
Journal Article
Review
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NICHD NIH HHS
  grantid: P30 HD002528
– fundername: NIA NIH HHS
  grantid: AG023549
– fundername: NINDS NIH HHS
  grantid: R01 NS078214
– fundername: NINDS NIH HHS
  grantid: 1R01NS078214
– fundername: NIA NIH HHS
  grantid: R01 AG023549
– fundername: NICHD NIH HHS
  grantid: HD02528
– fundername: NCRR NIH HHS
  grantid: P20 RR024214
– fundername: NIA NIH HHS
  grantid: K02 AG026491
– fundername: NIA NIH HHS
  grantid: AG026491
GroupedDBID ---
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
123
1CY
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAQQT
AASGY
AAVGM
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABHUG
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADBTR
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEQTP
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHBTC
AHMBA
AIACR
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRMAN
DRSTM
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
FYBCS
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
W8V
W99
WBKPD
WH7
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
YCJ
ZA5
ZGI
ZXP
ZZTAW
~IA
~WT
AITYG
HGLYW
OIG
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7T5
7TK
7TM
7TS
7U7
7U9
C1K
H94
K9.
NAPCQ
7X8
5PM
ID FETCH-LOGICAL-c5805-844707e1bce4113d7fe1dc17146260d8ae754411d948a783f01e5a5db34cf6363
IEDL.DBID DR2
ISSN 0148-639X
IngestDate Tue Sep 17 21:25:57 EDT 2024
Fri Aug 16 03:45:37 EDT 2024
Fri Aug 16 21:38:43 EDT 2024
Sat Aug 31 00:11:39 EDT 2024
Fri Aug 23 02:09:47 EDT 2024
Thu May 23 23:19:02 EDT 2024
Sat Aug 24 00:55:16 EDT 2024
Wed Jan 17 05:02:29 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords exercise
laminin
aging
synapse
active zone
Language English
License Copyright © 2013 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5805-844707e1bce4113d7fe1dc17146260d8ae754411d948a783f01e5a5db34cf6363
Notes istex:461FBB1E5F5AEE5DE6C7F4C774BACE8D9B55DA64
ark:/67375/WNG-J4R4WS6K-N
ArticleID:MUS24095
The work in our laboratories was supported by grants from the National Institutes of Health (1R01NS078214 to H.N., and AG023549 and AG026491 to J.A.S.), the Whitehall Foundation (to H.N), and the Japan Society for the Promotion of Science (to Y.M.). Core facility support was provided by the NIH‐NCRR (P20 RR024214) and NIH‐NICHD (HD02528).
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ObjectType-Feature-1
OpenAccessLink https://europepmc.org/articles/pmc4086464?pdf=render
PMID 24122772
PQID 1498115478
PQPubID 1016420
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4086464
proquest_miscellaneous_1534827664
proquest_miscellaneous_1499151540
proquest_journals_1498115478
crossref_primary_10_1002_mus_24095
pubmed_primary_24122772
wiley_primary_10_1002_mus_24095_MUS24095
istex_primary_ark_67375_WNG_J4R4WS6K_N
PublicationCentury 2000
PublicationDate March 2014
PublicationDateYYYYMMDD 2014-03-01
PublicationDate_xml – month: 03
  year: 2014
  text: March 2014
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Rochester
PublicationTitle Muscle & nerve
PublicationTitleAlternate Muscle Nerve
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Angus LM, Chakkalakal JV, Mejat A, Eibl JK, Belanger G, Megeney LA, et al. Calcineurin-NFAT signaling, together with GABP and peroxisome PGC-1α, drives utrophin gene expression at the neuromuscular junction. Am J Physiol Cell Physiol 2005;289:C908-917.
Drummond MJ, McCarthy JJ, Fry CS, Esser KA, Rasmussen BB. Aging differentially affects human skeletal muscle microRNA expression at rest and after an anabolic stimulus of resistance exercise and essential amino acids. Am J Physiol Endocrinol Metab 2008;295:E1333-1340.
Mukherjee K, Yang X, Gerber SH, Kwon HB, Ho A, Castillo PE, et al. Piccolo and bassoon maintain synaptic vesicle clustering without directly participating in vesicle exocytosis. Proc Natl Acad Sci USA 2010;107:6504-6509.
Nishimune H. Molecular mechanism of active zone organization at vertebrate neuromuscular junctions. Mol Neurobiol 2012;45:1-16.
Shibasaki T, Sunaga Y, Seino S. Integration of ATP, cAMP, and Ca2+ signals in insulin granule exocytosis. Diabetes 2004;53(suppl 3):S59-62.
Knight D, Tolley LK, Kim DK, Lavidis NA, Noakes PG. Functional analysis of neurotransmission at beta2-laminin deficient terminals. J Physiol 2003;546:789-800.
Fukuoka T, Engel AG, Lang B, Newsom-Davis J, Prior C, Wray DW. Lambert-Eaton myasthenic syndrome: I. Early morphological effects of IgG on the presynaptic membrane active zones. Ann Neurol 1987;22:193-199.
Dobrowolny G, Giacinti C, Pelosi L, Nicoletti C, Winn N, Barberi L, et al. Muscle expression of a local Igf-1 isoform protects motor neurons in an ALS mouse model. J Cell Biol 2005;168:193-199.
Noakes PG, Gautam M, Mudd J, Sanes JR, Merlie JP. Aberrant differentiation of neuromuscular junctions in mice lacking s-laminin/laminin beta 2. Nature 1995;374:258-262.
Ferraiuolo L, De Bono JP, Heath PR, Holden H, Kasher P, Channon KM, et al. Transcriptional response of the neuromuscular system to exercise training and potential implications for ALS. J Neurochem 2009;109:1714-1724.
Keller-Peck CR, Feng G, Sanes JR, Yan Q, Lichtman JW, Snider WD. Glial cell line-derived neurotrophic factor administration in postnatal life results in motor unit enlargement and continuous synaptic remodeling at the neuromuscular junction. J Neurosci 2001;21:6136-6146.
Fukunaga H, Engel AG, Lang B, Newsom-Davis J, Vincent A. Passive transfer of Lambert-Eaton myasthenic syndrome with IgG from man to mouse depletes the presynaptic membrane active zones. Proc Natl Acad Sci USA 1983;80:7636-7640.
Chen J, Mizushige T, Nishimune H. Active zone density is conserved during synaptic growth but impaired in aged mice. J Comp Neurol 2012;520:434-452.
Guggenmos DJ, Barbay S, Bethel-Brown C, Nudo RJ, Stanford JA. Effects of tongue force training on orolingual motor cortical representation. Behav Brain Res 2009;201:229-232.
Robitaille R, Adler EM, Charlton MP. Strategic location of calcium channels at transmitter release sites of frog neuromuscular synapses. Neuron 1990;5:773-779.
Takao-Rikitsu E, Mochida S, Inoue E, Deguchi-Tawarada M, Inoue M, Ohtsuka T, et al. Physical and functional interaction of the active zone proteins, CAST, RIM1, and Bassoon, in neurotransmitter release. J Cell Biol 2004;164:301-311.
Schaser AJ, Stang K, Connor NP, Behan M. The effect of age and tongue exercise on BDNF and TrkB in the hypoglossal nucleus of rats. Behav Brain Res 2012;226:235-241.
Carey AL, Kingwell BA. Novel pharmacological approaches to combat obesity and insulin resistance: targeting skeletal muscle with 'exercise mimetics.' Diabetologia 2009;52:2015-2026.
Davidsen PK, Gallagher IJ, Hartman JW, Tarnopolsky MA, Dela F, Helge JW, et al. High responders to resistance exercise training demonstrate differential regulation of skeletal muscle microRNA expression. J Appl Physiol 2011;110:309-317.
Booth FW, Chakravarthy MV, Gordon SE, Spangenburg EE. Waging war on physical inactivity: using modern molecular ammunition against an ancient enemy. J Appl Physiol 2002;93:3-30.
Wojtaszewski JF, Nielsen P, Hansen BF, Richter EA, Kiens B. Isoform-specific and exercise intensity-dependent activation of 5′-AMP-activated protein kinase in human skeletal muscle. J Physiol 2000;528:221-226.
Teran-Garcia M, Rankinen T, Koza RA, Rao DC, Bouchard C. Endurance training-induced changes in insulin sensitivity and gene expression. Am J Physiol Endocrinol Metab 2005;288:E1168-1178.
Robbins J, Gangnon RE, Theis SM, Kays SA, Hewitt AL, Hind JA. The effects of lingual exercise on swallowing in older adults. J Am Geriatr Soc 2005;53:1483-1489.
Deschenes MR, Maresh CM, Crivello JF, Armstrong LE, Kraemer WJ, Covault J. The effects of exercise training of different intensities on neuromuscular junction morphology. J Neurocytol 1993;22:603-615.
Johnson AM, Connor NP. Effects of electrical stimulation on neuromuscular junction morphology in the aging rat tongue. Muscle Nerve 2011;43:203-211.
Yan Q, Elliott J, Snider WD. Brain-derived neurotrophic factor rescues spinal motor neurons from axotomy-induced cell death. Nature 1992;360:753-755.
Sanes JR, Hall ZW. Antibodies that bind specifically to synaptic sites on muscle fiber basal lamina. J Cell Biol 1979;83:357-370.
Propst JW, Ko CP. Correlations between active zone ultrastructure and synaptic function studied with freeze-fracture of physiologically identified neuromuscular junctions. J Neurosci 1987;7:3654-3664.
Oppenheim RW, Yin QW, Prevette D, Yan Q. Brain-derived neurotrophic factor rescues developing avian motoneurons from cell death. Nature 1992;360:755-757.
Stanford JA, Vorontsova E, Fowler SC. The relationship between isometric force requirement and forelimb tremor in the rat. Physiol Behav 2000;69:285-293.
Choi S, Liu X, Li P, Akimoto T, Lee SY, Zhang M, et al. Transcriptional profiling in mouse skeletal muscle following a single bout of voluntary running: evidence of increased cell proliferation. J Appl Physiol 2005;99:2406-2415.
Narkar VA, Downes M, Yu RT, Embler E, Wang YX, Banayo E, et al. AMPK and PPARdelta agonists are exercise mimetics. Cell 2008;134:405-415.
Balice-Gordon RJ, Lichtman JW. Long-term synapse loss induced by focal blockade of postsynaptic receptors. Nature 1994;372:519-524.
Aoi W, Naito Y, Mizushima K, Takanami Y, Kawai Y, Ichikawa H, et al. The microRNA miR-696 regulates PGC-1{alpha} in mouse skeletal muscle in response to physical activity. Am J Physiol Endocrinol Metab 2010;298:E799-806.
Wilson MH, Deschenes MR. The neuromuscular junction: anatomical features and adaptations to various forms of increased, or decreased neuromuscular activity. Int J Neurosci 2005;115:803-828.
Nishimune H, Sanes JR, Carlson SS. A synaptic laminin-calcium channel interaction organizes active zones in motor nerve terminals. Nature 2004;432:580-587.
Ort T, Gerwien R, Lindborg KA, Diehl CJ, Lemieux AM, Eisen A, et al. Alterations in soleus muscle gene expression associated with a metabolic endpoint following exercise training by lean and obese Zucker rats. Physiol Genomics 2007;29:302-311.
Deschenes MR, Roby MA, Glass EK. Aging influences adaptations of the neuromuscular junction to endurance training. Neuroscience 2011;190:56-66.
Zenker M, Aigner T, Wendler O, Tralau T, Muntefering H, Fenski R, et al. Human laminin beta2 deficiency causes congenital nephrosis with mesangial sclerosis and distinct eye abnormalities. Hum Mol Genet 2004;13:2625-2632.
Smith DO. Acetylcholine storage, release and leakage at the neuromuscular junction of mature adult and aged rats. J Physiol 1984;347:161-176.
Hunter DD, Shah V, Merlie JP, Sanes JR. A laminin-like adhesive protein concentrated in the synaptic cleft of the neuromuscular junction. Nature 1989;338:229-234.
Ellisman MH, Rash JE, Staehelin LA, Porter KR. Studies of excitable membranes. II. A comparison of specializations at neuromuscular junctions and nonjunctional sarcolemmas of mammalian fast and slow twitch muscle fibers. J Cell Biol 1976;68:752-774.
Catterall WA. Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 2000;16:521-555.
Uchitel OD, Protti DA, Sanchez V, Cherksey BD, Sugimori M, Llinas R. P-type voltage-dependent calcium channel mediates presynaptic calcium influx and transmitter release in mammalian synapses. Proc Natl Acad Sci USA 1992;89:3330-3333.
Wang X, Hu B, Zieba A, Neumann NG, Kasper-Sonnenberg M, Honsbein A, et al. A protein interaction node at the neurotransmitter release site: domains of Aczonin/Piccolo, Bassoon, CAST, and Rim converge on the N-terminal domain of Munc13-1. J Neurosci 2009;29:12584-12596.
Kiyonaka S, Wakamori M, Miki T, Uriu Y, Nonaka M, Bito H, et al. RIM1 confers sustained activity and neurotransmitter vesicle anchoring to presynaptic Ca2+ channels. Nat Neurosci 2007;10:691-701.
Handschin C, Kobayashi YM, Chin S, Seale P, Campbell KP, Spiegelman BM. PGC-1alpha regulates the neuromuscular junction program and ameliorates Duchenne muscular dystrophy. Genes Dev 2007;21:770-783.
Ohlendieck K, Ervasti JM, Matsumura K, Kahl SD, Leveille CJ, Campbell KP. Dystrophin-related protein is localized to neuromuscular junctions of adult skeletal muscle. Neuron 1991;7:499-508.
Llinas R, Sugimori M, Silver RB. Microdomains of high calcium concentration in a presynaptic terminal. Science 1992;256:677-679.
Oppenheim RW, Houenou LJ, Johnson JE, Lin LF, Li L, Lo AC, et al. Developing motor neurons rescued from programmed and axotomy-induced cell death by GDNF. Nature 1995;373:344-346.
Yan B, Zhu CD, Guo JT, Zhao LH, Zhao JL. miR-206 regulates the growth of the teleost tilapia (Oreochromis niloticus) through the modulation of IGF-1 gene expression. J Exp Biol 2013;216:1265-1269.
Kanda K, Hashizume K. Effects of long-term physical exercise on age-related changes of spinal motoneurons and peripheral nerves in rats. Neurosci Res 1998;31:69-75.
Balice-Gordon RJ, Breedlove SM, Bernstein S, Lichtman JW. Neuromuscular junctions shrink and expand as muscle fiber size is manipulated: in vivo observations in the androgen-sensitive bulbocavernosus muscle of mice. J Neurosci 1990;10:2660-2671.
Jager S, Handschin C, St-Pierre J, Spiegelman BM. AMP-activated protein
2002; 16
2007; 104
2004; 164
1976; 68
2012; 520
1992; 360
2010; 107
2004; 29
2004; 130A
1993; 22
1994; 372
2010; 588
1997; 276
2008; 35
2011; 190
1995; 374
1995; 373
2011; 193
2003; 52
1993; 363
2001; 42
2011; 110
2009; 513
2000; 528
1994; 266
2000; 16
2010; 115
1971; 216
2008; 28
2002; 93
2012; 23
1981; 78
2003; 284
1989; 67
1996; 17
2000; 69
2005; 115
1989; 9
1984; 347
2010; 285
2007; 10
1971; 183
2012; 226
2003; 31
2012; 109
2001; 21
2004; 53
2012; 112
2004; 279
2004; 432
1992; 256
2013; 216
2003; 24
2010; 298
1994; 13
1995; 268
1995; 267
1983; 80
2004; 2004
2008; 134
1999; 514
2012; 45
2009; 109
2003; 100
2005; 99
2009; 587
2005; 12
1990; 5
1979; 83
1990; 10
2009; 46
1997; 83
2012; 287
2000; 218
1987; 7
2003; 114
2003; 95
1997; 90
2007; 29
2009; 52
2010; 68
1997; 19
2009; 201
2011; 25
2011; 28
1996; 24
2007; 21
2006; 404
1992; 89
2009; 326
1997; 136
1987; 124
1989; 338
1989; 339
2000; 25
1992; 186
2000; 23
1995; 15
2011; 31
2000; 273
2000; 274
2011; 174
2004; 90
2004; 91
1998; 20
2009; 418
1998; 23
1991; 7
2009; 29
1983; 339
1987; 16
2009; 34
2012; 151
2002; 25
1987; 22
2003; 547
2003; 546
2003; 424
2005; 288
2005; 168
2005; 289
1991; 20
1993; 10
2004; 13
2005; 53
2011; 43
2008; 454
2012; 7
1998; 31
2008; 295
2009; 39
19812333 - J Neurosci. 2009 Oct 7;29(40):12584-96
20332206 - Proc Natl Acad Sci U S A. 2010 Apr 6;107(14):6504-9
19690046 - Physiol Genomics. 2009 Nov 6;39(3):219-26
11487637 - J Neurosci. 2001 Aug 15;21(16):6136-46
19226520 - J Comp Neurol. 2009 Apr 10;513(5):457-68
7830769 - Nature. 1995 Jan 26;373(6512):344-6
10869594 - Physiol Behav. 2000 May;69(3):285-93
1654951 - Neuron. 1991 Sep;7(3):499-508
12562960 - J Physiol. 2003 Feb 15;547(Pt 1):247-54
8487864 - Nature. 1993 May 20;363(6426):266-70
15292521 - Sci STKE. 2004 Aug 3;2004(244):re11
22701595 - PLoS One. 2012;7(6):e38029
15930144 - Am J Physiol Cell Physiol. 2005 Oct;289(4):C908-17
7973664 - Science. 1994 Nov 11;266(5187):1062-4
22367207 - J Biol Chem. 2012 Apr 13;287(16):12913-26
14633846 - Diabetes. 2003 Dec;52(12):2874-81
21092861 - Neuron. 2010 Nov 18;68(4):724-38
7770776 - Science. 1995 Jun 9;268(5216):1495-9
22485182 - PLoS One. 2012;7(4):e34640
12879071 - Nature. 2003 Jul 24;424(6947):430-4
21030674 - J Appl Physiol (1985). 2011 Feb;110(2):309-17
1030710 - J Cell Biol. 1976 Mar;68(3):752-74
11018120 - J Physiol. 2000 Oct 1;528 Pt 1:221-6
15687108 - Am J Physiol Endocrinol Metab. 2005 Jun;288(6):E1168-78
7990923 - Nature. 1994 Dec 8;372(6506):519-24
8080464 - Neuron. 1993 Mar;10(3):359-67
10891387 - Biochem Biophys Res Commun. 2000 Jul 14;273(3):1150-5
14505576 - Cell. 2003 Sep 19;114(6):777-89
21228161 - J Neurosci. 2011 Jan 12;31(2):512-25
6584877 - Proc Natl Acad Sci U S A. 1983 Dec;80(24):7636-40
23217713 - Cell. 2012 Dec 7;151(6):1319-31
16790314 - Neurosci Lett. 2006 Aug 14;404(1-2):143-7
20731762 - J Neurochem. 2010 Nov;115(3):654-66
1465146 - Nature. 1992 Dec 24-31;360(6406):755-7
15892452 - Gene Expr. 2005;12(2):107-21
21683772 - Neuroscience. 2011 Sep 8;190:56-66
14660679 - J Biol Chem. 2004 Feb 27;279(9):7956-61
21951697 - Behav Brain Res. 2012 Jan 1;226(1):235-41
19428638 - Behav Brain Res. 2009 Jul 19;201(1):229-32
4330759 - Ann N Y Acad Sci. 1971 Sep 15;183:183-99
18650917 - Nature. 2008 Jul 24;454(7203):463-9
16019575 - Int J Neurosci. 2005 Jun;115(6):803-28
18827171 - Am J Physiol Endocrinol Metab. 2008 Dec;295(6):E1333-40
3662451 - Ann Neurol. 1987 Aug;22(2):193-9
20007902 - Science. 2009 Dec 11;326(5959):1549-54
22135013 - Mol Neurobiol. 2012 Feb;45(1):1-16
21092860 - Neuron. 2010 Nov 18;68(4):710-23
16137276 - J Am Geriatr Soc. 2005 Sep;53(9):1483-9
14981737 - Muscle Nerve. 2004 Mar;29(3):381-6
21498059 - Ann Anat. 2011 Jul;193(4):354-61
4326996 - J Physiol. 1971 Jul;216(2):331-43
19652469 - J Toxicol Sci. 2009 Oct;34(4):445-8
2922051 - Nature. 1989 Mar 16;338(6212):229-34
16081620 - J Appl Physiol (1985). 2005 Dec;99(6):2406-15
8229087 - J Neurocytol. 1993 Aug;22(8):603-15
14734538 - J Cell Biol. 2004 Jan 19;164(2):301-11
22107844 - Neuroreport. 2012 Jan 4;23(1):49-54
1980068 - Neuron. 1990 Dec;5(6):773-9
3500282 - J Neurosci. 1987 Nov;7(11):3654-64
1903804 - J Neurocytol. 1991 Mar;20(3):165-82
12624181 - Proc Natl Acad Sci U S A. 2003 Mar 18;100(6):3491-6
20452978 - J Biol Chem. 2010 Jul 9;285(28):21750-67
3666302 - Dev Biol. 1987 Nov;124(1):145-52
14870974 - J Muscle Res Cell Motil. 2003;24(8):587-92
9288752 - Cell. 1997 Aug 22;90(4):729-38
11031246 - Annu Rev Cell Dev Biol. 2000;16:521-55
20724368 - J Physiol. 2010 Oct 15;588(Pt 20):4029-37
11744623 - FASEB J. 2002 Feb;16(2):207-9
2541343 - Nature. 1989 May 4;339(6219):55-8
1281520 - Nature. 1992 Dec 24-31;360(6406):753-5
1510241 - Anat Embryol (Berl). 1992 Jul;186(2):125-8
7576631 - Neuron. 1995 Oct;15(4):821-8
21083432 - J Neurotrauma. 2011 Feb;28(2):299-309
9046071 - Synapse. 1996 Sep;24(1):1-11
1465147 - Nature. 1992 Dec 24-31;360(6406):757-9
7830768 - Nature. 1995 Jan 26;373(6512):341-4
12546693 - Biochem Soc Trans. 2003 Feb;31(Pt 1):236-41
20679195 - Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14863-8
11746714 - Synapse. 2001 Dec 1;42(3):177-84
17496890 - Nat Neurosci. 2007 Jun;10(6):691-701
11003794 - Muscle Nerve. 2000 Oct;23(10):1576-81
1348859 - Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3330-3
19196246 - Biochem J. 2009 Mar 1;418(2):261-75
9049252 - J Cell Biol. 1997 Feb 24;136(4):871-82
6310088 - J Physiol. 1983 Jun;339:355-77
2465393 - J Neurosci. 1989 Feb;9(2):639-47
14694501 - Muscle Nerve. 2004 Jan;29(1):73-81
1350109 - Science. 1992 May 1;256(5057):677-9
20668236 - Proc Natl Acad Sci U S A. 2010 Aug 24;107(34):14950-7
15379898 - J Neurochem. 2004 Oct;91(1):176-88
9704980 - Neurosci Res. 1998 May;31(1):69-75
9677431 - Can J Appl Physiol. 1998 Aug;23(4):339-60
15577901 - Nature. 2004 Dec 2;432(7017):580-7
2388082 - J Neurosci. 1990 Aug;10(8):2660-71
18674809 - Cell. 2008 Aug 8;134(3):405-15
91619 - J Cell Biol. 1979 Nov;83(2 Pt 1):357-70
6273920 - Proc Natl Acad Sci U S A. 1981 Nov;78(11):7210-3
19547950 - Diabetologia. 2009 Oct;52(10):2015-26
17403779 - Genes Dev. 2007 Apr 1;21(7):770-83
15561922 - Diabetes. 2004 Dec;53 Suppl 3:S59-62
23226462 - PLoS One. 2012;7(11):e51066
18780757 - Physiol Genomics. 2008 Nov 12;35(3):213-21
7623111 - J Neurosci. 1995 Jul;15(7 Pt 1):4796-805
22753485 - Proc Natl Acad Sci U S A. 2012 Jul 17;109(29):11830-5
9110980 - Science. 1997 Apr 25;276(5312):599-603
9539117 - Neuron. 1998 Mar;20(3):389-99
12070181 - J Appl Physiol (1985). 2002 Jul;93(1):3-30
15657392 - J Cell Biol. 2005 Jan 17;168(2):193-9
9852333 - J Physiol. 1999 Jan 15;514 ( Pt 2):533-40
12937035 - J Appl Physiol (1985). 2003 Dec;95(6):2485-94
15312161 - J Neurochem. 2004 Sep;90(5):1059-67
6323695 - J Physiol. 1984 Feb;347:161-76
19344372 - J Neurochem. 2009 Jun;109(6):1714-24
21885651 - FASEB J. 2011 Dec;25(12):4312-25
10913342 - Biochem Biophys Res Commun. 2000 Aug 2;274(2):350-4
12519750 - Am J Physiol Cell Physiol. 2003 May;284(5):C1149-55
10822262 - Dev Dyn. 2000 May;218(1):94-101
7885444 - Nature. 1995 Mar 16;374(6519):258-62
21917802 - J Neurosci. 2011 Sep 14;31(37):13191-203
22052873 - J Appl Physiol (1985). 2012 Feb;112(3):443-53
7993621 - Neuron. 1994 Dec;13(6):1275-80
12563004 - J Physiol. 2003 Feb 1;546(Pt 3):789-800
19251977 - J Med Genet. 2009 Mar;46(3):203-8
15367484 - Hum Mol Genet. 2004 Nov 1;13(21):2625-32
3694234 - J Neurocytol. 1987 Oct;16(5):589-99
17609368 - Proc Natl Acad Sci U S A. 2007 Jul 17;104(29):12017-22
9216945 - J Appl Physiol (1985). 1997 Jul;83(1):59-66
21935939 - J Comp Neurol. 2012 Feb 1;520(2):434-52
21254085 - Muscle Nerve. 2011 Feb;43(2):203-11
23197102 - J Exp Biol. 2013 Apr 1;216(Pt 7):1265-9
19723782 - J Physiol. 2009 Dec 1;587(Pt 23):5527-39
21307238 - J Neurosci. 2011 Feb 9;31(6):2000-8
2156964 - J Neurosci. 1990 Mar;10(3):894-908
10707974 - Neuron. 2000 Jan;25(1):79-91
11754180 - Muscle Nerve. 2002 Jan;25(1):17-25
20086200 - Am J Physiol Endocrinol Metab. 2010 Apr;298(4):E799-806
15372515 - Am J Med Genet A. 2004 Oct 1;130A(2):138-45
7839148 - Science. 1995 Feb 3;267(5198):695-9
2793742 - J Appl Physiol (1985). 1989 Oct;67(4):1409-17
21081155 - Neuroscience. 2011 Feb 3;174:234-44
8884603 - J Muscle Res Cell Motil. 1996 Aug;17(4):487-95
18268005 - Mol Cell Biol. 2008 Apr;28(8):2637-47
17284668 - Physiol Genomics. 2007 May 11;29(3):302-11
9354329 - Neuron. 1997 Oct;19(4):825-35
e_1_2_10_21_1
e_1_2_10_44_1
Perreau VM (e_1_2_10_133_1) 2005; 12
e_1_2_10_40_1
e_1_2_10_109_1
e_1_2_10_131_1
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_139_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_116_1
e_1_2_10_6_1
e_1_2_10_55_1
e_1_2_10_135_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_78_1
e_1_2_10_112_1
e_1_2_10_13_1
e_1_2_10_32_1
e_1_2_10_51_1
e_1_2_10_120_1
e_1_2_10_82_1
e_1_2_10_128_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_105_1
e_1_2_10_124_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_101_1
e_1_2_10_143_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_41_1
e_1_2_10_132_1
e_1_2_10_90_1
e_1_2_10_71_1
e_1_2_10_117_1
e_1_2_10_94_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_113_1
e_1_2_10_136_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_121_1
e_1_2_10_144_1
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_129_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_102_1
e_1_2_10_125_1
e_1_2_10_140_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_42_1
e_1_2_10_110_1
e_1_2_10_91_1
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_118_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_137_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_114_1
e_1_2_10_8_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_30_1
e_1_2_10_119_1
e_1_2_10_145_1
e_1_2_10_80_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_107_1
e_1_2_10_126_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_103_1
e_1_2_10_141_1
e_1_2_10_122_1
e_1_2_10_24_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_108_1
e_1_2_10_130_1
e_1_2_10_92_1
e_1_2_10_73_1
e_1_2_10_115_1
e_1_2_10_138_1
e_1_2_10_96_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_111_1
e_1_2_10_134_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_104_1
e_1_2_10_127_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_100_1
e_1_2_10_123_1
e_1_2_10_142_1
e_1_2_10_47_1
e_1_2_10_89_1
References_xml – volume: 93
  start-page: 3
  year: 2002
  end-page: 30
  article-title: Waging war on physical inactivity: using modern molecular ammunition against an ancient enemy
  publication-title: J Appl Physiol
– volume: 130A
  start-page: 138
  year: 2004
  end-page: 145
  article-title: Congenital nephrosis, mesangial sclerosis, and distinct eye abnormalities with microcoria: an autosomal recessive syndrome
  publication-title: Am J Med Genet A
– volume: 274
  start-page: 350
  year: 2000
  end-page: 354
  article-title: cDNA cloning and mRNA analysis of PGC‐1 in epitrochlearis muscle in swimming‐exercised rats
  publication-title: Biochem Biophys Res Commun
– volume: 42
  start-page: 177
  year: 2001
  end-page: 184
  article-title: Recovery of neuromuscular junction morphology following 16 days of spaceflight
  publication-title: Synapse
– volume: 136
  start-page: 871
  year: 1997
  end-page: 882
  article-title: Subtle neuromuscular defects in utrophin‐deficient mice
  publication-title: J Cell Biol
– volume: 31
  start-page: 512
  year: 2011
  end-page: 525
  article-title: Calcium channels link the muscle‐derived synapse organizer laminin beta2 to Bassoon and CAST/Erc2 to organize presynaptic active zones
  publication-title: J Neurosci
– volume: 114
  start-page: 777
  year: 2003
  end-page: 789
  article-title: Homer binds TRPC family channels and is required for gating of TRPC1 by IP3 receptors
  publication-title: Cell
– volume: 124
  start-page: 145
  year: 1987
  end-page: 152
  article-title: Distinct neurotrophic factors from skeletal muscle and the central nervous system interact synergistically to support the survival of cultured embryonic spinal motor neurons
  publication-title: Dev Biol
– volume: 183
  start-page: 183
  year: 1971
  end-page: 199
  article-title: Quantal components of end‐plate potentials in the myasthenic syndrome
  publication-title: Ann NY Acad Sci
– volume: 13
  start-page: 1275
  year: 1994
  end-page: 1280
  article-title: Localization of individual calcium channels at the release face of a presynaptic nerve terminal
  publication-title: Neuron
– volume: 267
  start-page: 695
  year: 1995
  end-page: 699
  article-title: Potentiation of transmitter release by ciliary neurotrophic factor requires somatic signaling
  publication-title: Science
– volume: 35
  start-page: 213
  year: 2008
  end-page: 221
  article-title: Gene expression profiling of skeletal muscle in exercise‐trained and sedentary rats with inborn high and low VO2max
  publication-title: Physiol Genomics
– volume: 373
  start-page: 344
  year: 1995
  end-page: 346
  article-title: Developing motor neurons rescued from programmed and axotomy‐induced cell death by GDNF
  publication-title: Nature
– volume: 372
  start-page: 519
  year: 1994
  end-page: 524
  article-title: Long‐term synapse loss induced by focal blockade of postsynaptic receptors
  publication-title: Nature
– volume: 266
  start-page: 1062
  year: 1994
  end-page: 1064
  article-title: GDNF: a potent survival factor for motoneurons present in peripheral nerve and muscle
  publication-title: Science
– volume: 226
  start-page: 235
  year: 2012
  end-page: 241
  article-title: The effect of age and tongue exercise on BDNF and TrkB in the hypoglossal nucleus of rats
  publication-title: Behav Brain Res
– volume: 67
  start-page: 1409
  year: 1989
  end-page: 1417
  article-title: Morphological and biochemical changes in old rat muscles: effect of increased use
  publication-title: J Appl Physiol
– volume: 107
  start-page: 14950
  year: 2010
  end-page: 14957
  article-title: Quantitative proteomics of the Cav2 channel nano‐environments in the mammalian brain
  publication-title: Proc Natl Acad Sci USA
– volume: 83
  start-page: 59
  year: 1997
  end-page: 66
  article-title: Endurance exercise modulates neuromuscular junction of C57BL/6NNia aging mice
  publication-title: J Appl Physiol
– volume: 91
  start-page: 176
  year: 2004
  end-page: 188
  article-title: Protein processing and releases of neuregulin‐1 are regulated in an activity‐dependent manner
  publication-title: J Neurochem
– volume: 110
  start-page: 309
  year: 2011
  end-page: 317
  article-title: High responders to resistance exercise training demonstrate differential regulation of skeletal muscle microRNA expression
  publication-title: J Appl Physiol
– volume: 276
  start-page: 599
  year: 1997
  end-page: 603
  article-title: Maintenance of acetylcholine receptor number by neuregulins at the neuromuscular junction in vivo
  publication-title: Science
– volume: 285
  start-page: 21750
  year: 2010
  end-page: 21767
  article-title: Rab3‐interacting molecule gamma isoforms lacking the Rab3‐binding domain induce long lasting currents but block neurotransmitter vesicle anchoring in voltage‐dependent P/Q‐type Ca2+ channels
  publication-title: J Biol Chem
– volume: 20
  start-page: 165
  year: 1991
  end-page: 182
  article-title: Plasticity of presynaptic and postsynaptic elements of neuromuscular junctions repeatedly observed in living adult mice
  publication-title: J Neurocytol
– volume: 374
  start-page: 258
  year: 1995
  end-page: 262
  article-title: Aberrant differentiation of neuromuscular junctions in mice lacking s‐laminin/laminin beta 2
  publication-title: Nature
– volume: 22
  start-page: 603
  year: 1993
  end-page: 615
  article-title: The effects of exercise training of different intensities on neuromuscular junction morphology
  publication-title: J Neurocytol
– volume: 31
  start-page: 2000
  year: 2011
  end-page: 2008
  article-title: Active zones and the readily releasable pool of synaptic vesicles at the neuromuscular junction of the mouse
  publication-title: J Neurosci
– volume: 17
  start-page: 487
  year: 1996
  end-page: 495
  article-title: Cloning and characterization of an IGF‐1 isoform expressed in skeletal muscle subjected to stretch
  publication-title: J Muscle Res Cell Motil
– volume: 134
  start-page: 405
  year: 2008
  end-page: 415
  article-title: AMPK and PPARdelta agonists are exercise mimetics
  publication-title: Cell
– volume: 43
  start-page: 203
  year: 2011
  end-page: 211
  article-title: Effects of electrical stimulation on neuromuscular junction morphology in the aging rat tongue
  publication-title: Muscle Nerve
– volume: 90
  start-page: 1059
  year: 2004
  end-page: 1067
  article-title: NFATc1 activates the acetylcholinesterase promoter in rat muscle
  publication-title: J Neurochem
– volume: 25
  start-page: 79
  year: 2000
  end-page: 91
  article-title: Cysteine‐rich domain isoforms of the neuregulin‐1 gene are required for maintenance of peripheral synapses
  publication-title: Neuron
– volume: 284
  start-page: C1149
  year: 2003
  end-page: 1155
  article-title: Regulation of neuregulin/ErbB signaling by contractile activity in skeletal muscle
  publication-title: Am J Physiol Cell Physiol
– volume: 432
  start-page: 580
  year: 2004
  end-page: 587
  article-title: A synaptic laminin–calcium channel interaction organizes active zones in motor nerve terminals
  publication-title: Nature
– volume: 109
  start-page: 11830
  year: 2012
  end-page: 11835
  article-title: RIM genes differentially contribute to organizing presynaptic release sites
  publication-title: Proc Natl Acad Sci USA
– volume: 7
  start-page: e34640
  year: 2012
  article-title: Shared resistance to aging and ALS in neuromuscular junctions of specific muscles
  publication-title: PLoS One
– volume: 19
  start-page: 825
  year: 1997
  end-page: 835
  article-title: Potentiation of developing synapses by postsynaptic release of neurotrophin‐4
  publication-title: Neuron
– volume: 5
  start-page: 773
  year: 1990
  end-page: 779
  article-title: Strategic location of calcium channels at transmitter release sites of frog neuromuscular synapses
  publication-title: Neuron
– volume: 373
  start-page: 341
  year: 1995
  end-page: 344
  article-title: In vivo neurotrophic effects of GDNF on neonatal and adult facial motor neurons
  publication-title: Nature
– volume: 289
  start-page: C908
  year: 2005
  end-page: 917
  article-title: Calcineurin‐NFAT signaling, together with GABP and peroxisome PGC‐1α, drives utrophin gene expression at the neuromuscular junction
  publication-title: Am J Physiol Cell Physiol
– volume: 68
  start-page: 752
  year: 1976
  end-page: 774
  article-title: Studies of excitable membranes. II. A comparison of specializations at neuromuscular junctions and nonjunctional sarcolemmas of mammalian fast and slow twitch muscle fibers
  publication-title: J Cell Biol
– volume: 216
  start-page: 1265
  year: 2013
  end-page: 1269
  article-title: miR‐206 regulates the growth of the teleost tilapia (Oreochromis niloticus) through the modulation of IGF‐1 gene expression
  publication-title: J Exp Biol
– volume: 24
  start-page: 587
  year: 2003
  end-page: 592
  article-title: Transcriptional analysis of mouse skeletal myofiber diversity and adaptation to endurance exercise
  publication-title: J Muscle Res Cell Motil
– volume: 29
  start-page: 302
  year: 2007
  end-page: 311
  article-title: Alterations in soleus muscle gene expression associated with a metabolic endpoint following exercise training by lean and obese Zucker rats
  publication-title: Physiol Genomics
– volume: 218
  start-page: 94
  year: 2000
  end-page: 101
  article-title: Severe peripheral sensory neuron loss and modest motor neuron reduction in mice with combined deficiency of brain‐derived neurotrophic factor, neurotrophin 3 and neurotrophin 4/5
  publication-title: Dev Dyn
– volume: 424
  start-page: 430
  year: 2003
  end-page: 434
  article-title: Genetic evidence that relative synaptic efficacy biases the outcome of synaptic competition
  publication-title: Nature
– volume: 326
  start-page: 1549
  year: 2009
  end-page: 1554
  article-title: MicroRNA‐206 Delays ALS progression and promotes regeneration of neuromuscular synapses in mice
  publication-title: Science
– volume: 15
  start-page: 4796
  year: 1995
  end-page: 4805
  article-title: Neurotrophins promote maturation of developing neuromuscular synapses
  publication-title: J Neurosci
– volume: 45
  start-page: 1
  year: 2012
  end-page: 16
  article-title: Molecular mechanism of active zone organization at vertebrate neuromuscular junctions
  publication-title: Mol Neurobiol
– volume: 90
  start-page: 729
  year: 1997
  end-page: 738
  article-title: Skeletal and cardiac myopathies in mice lacking utrophin and dystrophin: a model for Duchenne muscular dystrophy
  publication-title: Cell
– volume: 10
  start-page: 2660
  year: 1990
  end-page: 2671
  article-title: Neuromuscular junctions shrink and expand as muscle fiber size is manipulated: in vivo observations in the androgen‐sensitive bulbocavernosus muscle of mice
  publication-title: J Neurosci
– volume: 89
  start-page: 3330
  year: 1992
  end-page: 3333
  article-title: P‐type voltage‐dependent calcium channel mediates presynaptic calcium influx and transmitter release in mammalian synapses
  publication-title: Proc Natl Acad Sci USA
– volume: 528
  start-page: 221
  year: 2000
  end-page: 226
  article-title: Isoform‐specific and exercise intensity‐dependent activation of 5′‐AMP‐activated protein kinase in human skeletal muscle
  publication-title: J Physiol
– volume: 16
  start-page: 207
  year: 2002
  end-page: 209
  article-title: Differential gene expression in the rat soleus muscle during early work overload‐induced hypertrophy
  publication-title: FASEB J
– volume: 546
  start-page: 789
  year: 2003
  end-page: 800
  article-title: Functional analysis of neurotransmission at beta2‐laminin deficient terminals
  publication-title: J Physiol
– volume: 83
  start-page: 357
  year: 1979
  end-page: 370
  article-title: Antibodies that bind specifically to synaptic sites on muscle fiber basal lamina
  publication-title: J Cell Biol
– volume: 23
  start-page: 49
  year: 2012
  end-page: 54
  article-title: ELKS1 and Ca2+ channel subunit beta4 interact and colocalize at cerebellar synapses
  publication-title: Neuroreport
– volume: 347
  start-page: 161
  year: 1984
  end-page: 176
  article-title: Acetylcholine storage, release and leakage at the neuromuscular junction of mature adult and aged rats
  publication-title: J Physiol
– volume: 513
  start-page: 457
  year: 2009
  end-page: 468
  article-title: Macromolecular connections of active zone material to docked synaptic vesicles and presynaptic membrane at neuromuscular junctions of mouse
  publication-title: J Comp Neurol
– volume: 68
  start-page: 710
  year: 2010
  end-page: 723
  article-title: Bassoon speeds vesicle reloading at a central excitatory synapse
  publication-title: Neuron
– volume: 29
  start-page: 12584
  year: 2009
  end-page: 12596
  article-title: A protein interaction node at the neurotransmitter release site: domains of Aczonin/Piccolo, Bassoon, CAST, and Rim converge on the N‐terminal domain of Munc13‐1
  publication-title: J Neurosci
– volume: 107
  start-page: 6504
  year: 2010
  end-page: 6509
  article-title: Piccolo and bassoon maintain synaptic vesicle clustering without directly participating in vesicle exocytosis
  publication-title: Proc Natl Acad Sci USA
– volume: 53
  start-page: S59
  issue: suppl 3
  year: 2004
  end-page: 62
  article-title: Integration of ATP, cAMP, and Ca2+ signals in insulin granule exocytosis
  publication-title: Diabetes
– volume: 107
  start-page: 14863
  year: 2010
  end-page: 14868
  article-title: Attenuation of age‐related changes in mouse neuromuscular synapses by caloric restriction and exercise
  publication-title: Proc Natl Acad Sci USA
– volume: 115
  start-page: 803
  year: 2005
  end-page: 828
  article-title: The neuromuscular junction: anatomical features and adaptations to various forms of increased, or decreased neuromuscular activity
  publication-title: Int J Neurosci
– volume: 16
  start-page: 521
  year: 2000
  end-page: 555
  article-title: Structure and regulation of voltage‐gated Ca2+ channels
  publication-title: Annu Rev Cell Dev Biol
– volume: 547
  start-page: 247
  year: 2003
  end-page: 254
  article-title: Expression of IGF‐I splice variants in young and old human skeletal muscle after high resistance exercise
  publication-title: J Physiol
– volume: 29
  start-page: 381
  year: 2004
  end-page: 386
  article-title: Neurotrophins improve neuromuscular transmission in the adult rat diaphragm
  publication-title: Muscle Nerve
– volume: 28
  start-page: 2637
  year: 2008
  end-page: 2647
  article-title: Mice lacking Homer 1 exhibit a skeletal myopathy characterized by abnormal transient receptor potential channel activity
  publication-title: Mol Cell Biol
– volume: 16
  start-page: 589
  year: 1987
  end-page: 599
  article-title: Effects of endurance exercise on the morphology of mouse neuromuscular junctions during ageing
  publication-title: J Neurocytol
– volume: 46
  start-page: 203
  year: 2009
  end-page: 208
  article-title: Mutations in LAMB2 causing a severe form of synaptic congenital myasthenic syndrome
  publication-title: J Med Genet
– volume: 22
  start-page: 193
  year: 1987
  end-page: 199
  article-title: Lambert–Eaton myasthenic syndrome: I. Early morphological effects of IgG on the presynaptic membrane active zones
  publication-title: Ann Neurol
– volume: 34
  start-page: 445
  year: 2009
  end-page: 448
  article-title: DNA microarray analysis of transcriptional responses of mouse spinal cords to physical exercise
  publication-title: J Toxicol Sci
– volume: 164
  start-page: 301
  year: 2004
  end-page: 311
  article-title: Physical and functional interaction of the active zone proteins, CAST, RIM1, and Bassoon, in neurotransmitter release
  publication-title: J Cell Biol
– volume: 256
  start-page: 677
  year: 1992
  end-page: 679
  article-title: Microdomains of high calcium concentration in a presynaptic terminal
  publication-title: Science
– volume: 363
  start-page: 266
  year: 1993
  end-page: 270
  article-title: Neurotrophins promote motor neuron survival and are present in embryonic limb bud
  publication-title: Nature
– volume: 190
  start-page: 56
  year: 2011
  end-page: 66
  article-title: Aging influences adaptations of the neuromuscular junction to endurance training
  publication-title: Neuroscience
– volume: 15
  start-page: 821
  year: 1995
  end-page: 828
  article-title: GDNF is an age‐specific survival factor for sensory and autonomic neurons
  publication-title: Neuron
– volume: 288
  start-page: E1168
  year: 2005
  end-page: 1178
  article-title: Endurance training‐induced changes in insulin sensitivity and gene expression
  publication-title: Am J Physiol Endocrinol Metab
– volume: 52
  start-page: 2015
  year: 2009
  end-page: 2026
  article-title: Novel pharmacological approaches to combat obesity and insulin resistance: targeting skeletal muscle with 'exercise mimetics.'
  publication-title: Diabetologia
– volume: 115
  start-page: 654
  year: 2010
  end-page: 666
  article-title: Presynaptic calcium channels and alpha3‐integrins are complexed with synaptic cleft laminins, cytoskeletal elements and active zone components
  publication-title: J Neurochem
– volume: 360
  start-page: 755
  year: 1992
  end-page: 757
  article-title: Brain‐derived neurotrophic factor rescues developing avian motoneurons from cell death
  publication-title: Nature
– volume: 7
  start-page: 499
  year: 1991
  end-page: 508
  article-title: Dystrophin‐related protein is localized to neuromuscular junctions of adult skeletal muscle
  publication-title: Neuron
– volume: 2004
  start-page: re11
  year: 2004
  article-title: Molecular and cellular determinants of skeletal muscle atrophy and hypertrophy
  publication-title: Sci STKE
– volume: 80
  start-page: 7636
  year: 1983
  end-page: 7640
  article-title: Passive transfer of Lambert–Eaton myasthenic syndrome with IgG from man to mouse depletes the presynaptic membrane active zones
  publication-title: Proc Natl Acad Sci USA
– volume: 39
  start-page: 219
  year: 2009
  end-page: 226
  article-title: Evidence of MyomiR network regulation of beta‐myosin heavy chain gene expression during skeletal muscle atrophy
  publication-title: Physiol Genomics
– volume: 268
  start-page: 1495
  year: 1995
  end-page: 1499
  article-title: Muscle‐derived neurotrophin‐4 as an activity‐dependent trophic signal for adult motor neurons
  publication-title: Science
– volume: 21
  start-page: 770
  year: 2007
  end-page: 783
  article-title: PGC‐1alpha regulates the neuromuscular junction program and ameliorates Duchenne muscular dystrophy
  publication-title: Genes Dev
– volume: 193
  start-page: 354
  year: 2011
  end-page: 361
  article-title: Enhancing recovery from peripheral nerve injury using treadmill training
  publication-title: Ann Anat
– volume: 29
  start-page: 73
  year: 2004
  end-page: 81
  article-title: Exercise‐induced gene expression in soleus muscle is dependent on time after spinal cord injury in rats
  publication-title: Muscle Nerve
– volume: 174
  start-page: 234
  year: 2011
  end-page: 244
  article-title: Glial cell line‐derived neurotrophic factor protein content in rat skeletal muscle is altered by increased physical activity in vivo and in vitro
  publication-title: Neuroscience
– volume: 151
  start-page: 1319
  year: 2012
  end-page: 1331
  article-title: A PGC‐1alpha isoform induced by resistance training regulates skeletal muscle hypertrophy
  publication-title: Cell
– volume: 339
  start-page: 355
  year: 1983
  end-page: 377
  article-title: Neuromuscular transmission and correlative morphology in young and old mice
  publication-title: J Physiol
– volume: 68
  start-page: 724
  year: 2010
  end-page: 738
  article-title: Bassoon and the synaptic ribbon organize Ca2+ channels and vesicles to add release sites and promote refilling
  publication-title: Neuron
– volume: 338
  start-page: 229
  year: 1989
  end-page: 234
  article-title: A laminin‐like adhesive protein concentrated in the synaptic cleft of the neuromuscular junction
  publication-title: Nature
– volume: 360
  start-page: 757
  year: 1992
  end-page: 759
  article-title: Brain‐derived neurotrophic factor prevents the death of motoneurons in newborn rats after nerve section
  publication-title: Nature
– volume: 273
  start-page: 1150
  year: 2000
  end-page: 1155
  article-title: Exercise induces isoform‐specific increase in 5′AMP‐activated protein kinase activity in human skeletal muscle
  publication-title: Biochem Biophys Res Commun
– volume: 588
  start-page: 4029
  year: 2010
  end-page: 4037
  article-title: Muscle specific microRNAs are regulated by endurance exercise in human skeletal muscle
  publication-title: J Physiol
– volume: 360
  start-page: 753
  year: 1992
  end-page: 755
  article-title: Brain‐derived neurotrophic factor rescues spinal motor neurons from axotomy‐induced cell death
  publication-title: Nature
– volume: 31
  start-page: 69
  year: 1998
  end-page: 75
  article-title: Effects of long‐term physical exercise on age‐related changes of spinal motoneurons and peripheral nerves in rats
  publication-title: Neurosci Res
– volume: 95
  start-page: 2485
  year: 2003
  end-page: 2494
  article-title: Molecular responses of human muscle to eccentric exercise
  publication-title: J Appl Physiol
– volume: 514
  start-page: 533
  year: 1999
  end-page: 540
  article-title: Calcium channels coupled to neurotransmitter release at neonatal rat neuromuscular junctions
  publication-title: J Physiol
– volume: 287
  start-page: 12913
  year: 2012
  end-page: 12926
  article-title: A novel cardiomyocyte‐enriched microRNA, miR‐378, targets insulin‐like growth factor 1 receptor: implications in postnatal cardiac remodeling and cell survival
  publication-title: J Biol Chem
– volume: 9
  start-page: 639
  year: 1989
  end-page: 647
  article-title: Remodeling of neuromuscular junctions in adult mouse soleus
  publication-title: J Neurosci
– volume: 339
  start-page: 55
  year: 1989
  end-page: 58
  article-title: An autosomal transcript in skeletal muscle with homology to dystrophin
  publication-title: Nature
– volume: 418
  start-page: 261
  year: 2009
  end-page: 275
  article-title: AMPK and the biochemistry of exercise: implications for human health and disease
  publication-title: Biochem J
– volume: 20
  start-page: 389
  year: 1998
  end-page: 399
  article-title: Vesicle pools and Ca2+ microdomains: new tools for understanding their roles in neurotransmitter release
  publication-title: Neuron
– volume: 7
  start-page: 3654
  year: 1987
  end-page: 3664
  article-title: Correlations between active zone ultrastructure and synaptic function studied with freeze‐fracture of physiologically identified neuromuscular junctions
  publication-title: J Neurosci
– volume: 31
  start-page: 13191
  year: 2011
  end-page: 13203
  article-title: Nerve terminal growth remodels neuromuscular synapses in mice following regeneration of the postsynaptic muscle fiber
  publication-title: J Neurosci
– volume: 69
  start-page: 285
  year: 2000
  end-page: 293
  article-title: The relationship between isometric force requirement and forelimb tremor in the rat
  publication-title: Physiol Behav
– volume: 201
  start-page: 229
  year: 2009
  end-page: 232
  article-title: Effects of tongue force training on orolingual motor cortical representation
  publication-title: Behav Brain Res
– volume: 23
  start-page: 1576
  year: 2000
  end-page: 1581
  article-title: Effects of resistance training on neuromuscular junction morphology
  publication-title: Muscle Nerve
– volume: 104
  start-page: 12017
  year: 2007
  end-page: 12022
  article-title: AMP‐activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC‐1alpha
  publication-title: Proc Natl Acad Sci USA
– volume: 12
  start-page: 107
  year: 2005
  end-page: 121
  article-title: Exercise‐induced gene expression changes in the rat spinal cord
  publication-title: Gene Expression
– volume: 23
  start-page: 339
  year: 1998
  end-page: 360
  article-title: The case for adaptability of the neuromuscular junction to endurance exercise training
  publication-title: Can J Appl Physiol
– volume: 168
  start-page: 193
  year: 2005
  end-page: 199
  article-title: Muscle expression of a local Igf‐1 isoform protects motor neurons in an ALS mouse model
  publication-title: J Cell Biol
– volume: 10
  start-page: 691
  year: 2007
  end-page: 701
  article-title: RIM1 confers sustained activity and neurotransmitter vesicle anchoring to presynaptic Ca2+ channels
  publication-title: Nat Neurosci
– volume: 13
  start-page: 2625
  year: 2004
  end-page: 2632
  article-title: Human laminin beta2 deficiency causes congenital nephrosis with mesangial sclerosis and distinct eye abnormalities
  publication-title: Hum Mol Genet
– volume: 454
  start-page: 463
  year: 2008
  end-page: 469
  article-title: The role of exercise and PGC1alpha in inflammation and chronic disease
  publication-title: Nature
– volume: 100
  start-page: 3491
  year: 2003
  end-page: 3496
  article-title: Altered properties of quantal neurotransmitter release at endplates of mice lacking P/Q‐type Ca2+ channels
  publication-title: Proc Natl Acad Sci USA
– volume: 10
  start-page: 894
  year: 1990
  end-page: 908
  article-title: In vivo visualization of the growth of pre‐ and postsynaptic elements of neuromuscular junctions in the mouse
  publication-title: J Neurosci
– volume: 99
  start-page: 2406
  year: 2005
  end-page: 2415
  article-title: Transcriptional profiling in mouse skeletal muscle following a single bout of voluntary running: evidence of increased cell proliferation
  publication-title: J Appl Physiol
– volume: 21
  start-page: 6136
  year: 2001
  end-page: 6146
  article-title: Glial cell line‐derived neurotrophic factor administration in postnatal life results in motor unit enlargement and continuous synaptic remodeling at the neuromuscular junction
  publication-title: J Neurosci
– volume: 10
  start-page: 359
  year: 1993
  end-page: 367
  article-title: Evidence that brain‐derived neurotrophic factor is a trophic factor for motor neurons in vivo
  publication-title: Neuron
– volume: 52
  start-page: 2874
  year: 2003
  end-page: 2881
  article-title: Endurance training in humans leads to fiber type‐specific increases in levels of peroxisome proliferator‐activated receptor‐gamma coactivator‐1 and peroxisome proliferator‐activated receptor‐alpha in skeletal muscle
  publication-title: Diabetes
– volume: 109
  start-page: 1714
  year: 2009
  end-page: 1724
  article-title: Transcriptional response of the neuromuscular system to exercise training and potential implications for ALS
  publication-title: J Neurochem
– volume: 53
  start-page: 1483
  year: 2005
  end-page: 1489
  article-title: The effects of lingual exercise on swallowing in older adults
  publication-title: J Am Geriatr Soc
– volume: 7
  start-page: e51066
  year: 2012
  article-title: Pronounced effects of acute endurance exercise on gene expression in resting and exercising human skeletal muscle
  publication-title: PLoS One
– volume: 295
  start-page: E1333
  year: 2008
  end-page: 1340
  article-title: Aging differentially affects human skeletal muscle microRNA expression at rest and after an anabolic stimulus of resistance exercise and essential amino acids
  publication-title: Am J Physiol Endocrinol Metab
– volume: 31
  start-page: 236
  year: 2003
  end-page: 241
  article-title: Selective suppression of AMP‐activated protein kinase in skeletal muscle: update on 'lazy mice.'
  publication-title: Biochem Soc Trans
– volume: 587
  start-page: 5527
  year: 2009
  end-page: 5539
  article-title: Lack of adequate appreciation of physical exercise's complexities can pre‐empt appropriate design and interpretation in scientific discovery
  publication-title: J Physiol
– volume: 7
  start-page: e38029
  year: 2012
  article-title: Active zone protein Bassoon co‐localizes with presynaptic calcium channel, modifies channel function, and recovers from aging related loss by exercise
  publication-title: PLoS One
– volume: 28
  start-page: 299
  year: 2011
  end-page: 309
  article-title: Activity‐dependent increase in neurotrophic factors is associated with an enhanced modulation of spinal reflexes after spinal cord injury
  publication-title: J Neurotrauma
– volume: 25
  start-page: 4312
  year: 2011
  end-page: 4325
  article-title: Expression and regulation of Homer in human skeletal muscle during neuromuscular junction adaptation to disuse and exercise
  publication-title: FASEB J
– volume: 520
  start-page: 434
  year: 2012
  end-page: 452
  article-title: Active zone density is conserved during synaptic growth but impaired in aged mice
  publication-title: J Comp Neurol
– volume: 78
  start-page: 7210
  year: 1981
  end-page: 7213
  article-title: Are the presynaptic membrane particles the calcium channels?
  publication-title: Proc Natl Acad Sci USA
– volume: 279
  start-page: 7956
  year: 2004
  end-page: 7961
  article-title: Interaction of ATP sensor, cAMP sensor, Ca2+ sensor, and voltage‐dependent Ca2+ channel in insulin granule exocytosis
  publication-title: J Biol Chem
– volume: 112
  start-page: 443
  year: 2012
  end-page: 453
  article-title: Resistance exercise training influences skeletal muscle immune activation: a microarray analysis
  publication-title: J Appl Physiol
– volume: 298
  start-page: E799
  year: 2010
  end-page: 806
  article-title: The microRNA miR‐696 regulates PGC‐1{alpha} in mouse skeletal muscle in response to physical activity
  publication-title: Am J Physiol Endocrinol Metab
– volume: 24
  start-page: 1
  year: 1996
  end-page: 11
  article-title: Low calcium‐induced disruption of active zone structure and function at the frog neuromuscular junction
  publication-title: Synapse
– volume: 186
  start-page: 125
  year: 1992
  end-page: 128
  article-title: Different effects of physical training on the morphology of motor nerve terminals in the rat extensor digitorum longus and soleus muscles
  publication-title: Anat Embryol
– volume: 404
  start-page: 143
  year: 2006
  end-page: 147
  article-title: Triggering of BDNF facilitatory action on neuromuscular transmission by adenosine A2A receptors
  publication-title: Neurosci Lett
– volume: 25
  start-page: 17
  year: 2002
  end-page: 25
  article-title: Aging of the human neuromuscular system
  publication-title: Muscle Nerve
– volume: 216
  start-page: 331
  year: 1971
  end-page: 343
  article-title: Age changes in cross striated muscle of the rat
  publication-title: J Physiol
– ident: e_1_2_10_71_1
  doi: 10.1073/pnas.1005940107
– ident: e_1_2_10_51_1
  doi: 10.1073/pnas.78.11.7210
– ident: e_1_2_10_91_1
  doi: 10.1007/BF00123364
– ident: e_1_2_10_85_1
  doi: 10.1007/s00125-009-1420-x
– ident: e_1_2_10_100_1
  doi: 10.1074/jbc.M111.331751
– ident: e_1_2_10_81_1
  doi: 10.1126/science.276.5312.599
– ident: e_1_2_10_92_1
  doi: 10.1111/j.1469-7793.2003.00247.x
– ident: e_1_2_10_132_1
  doi: 10.1016/S0092-8674(00)80533-4
– ident: e_1_2_10_7_1
  doi: 10.1002/1097-4598(200010)23:10<1576::AID-MUS15>3.0.CO;2-J
– ident: e_1_2_10_104_1
  doi: 10.1016/j.neuroscience.2010.11.016
– ident: e_1_2_10_18_1
  doi: 10.1523/JNEUROSCI.10-03-00894.1990
– ident: e_1_2_10_44_1
  doi: 10.1152/japplphysiol.01161.2002
– ident: e_1_2_10_22_1
  doi: 10.1002/cne.22764
– ident: e_1_2_10_135_1
  doi: 10.2131/jts.34.445
– ident: e_1_2_10_21_1
  doi: 10.1002/(SICI)1098-2396(199609)24:1<1::AID-SYN1>3.0.CO;2-A
– ident: e_1_2_10_138_1
  doi: 10.1023/B:JURE.0000009968.60331.86
– ident: e_1_2_10_139_1
  doi: 10.1152/japplphysiol.00545.2005
– ident: e_1_2_10_102_1
  doi: 10.1089/neu.2010.1594
– ident: e_1_2_10_49_1
  doi: 10.1523/JNEUROSCI.3771-10.2011
– ident: e_1_2_10_4_1
  doi: 10.1007/BF00174949
– ident: e_1_2_10_126_1
  doi: 10.1096/fj.11-186049
– ident: e_1_2_10_27_1
  doi: 10.1073/pnas.1002220107
– ident: e_1_2_10_112_1
  doi: 10.1016/0896-6273(93)90326-M
– ident: e_1_2_10_53_1
  doi: 10.1126/science.1350109
– ident: e_1_2_10_58_1
  doi: 10.1002/cne.21975
– ident: e_1_2_10_120_1
  doi: 10.1016/S0896-6273(00)80964-2
– ident: e_1_2_10_89_1
  doi: 10.1073/pnas.0705070104
– ident: e_1_2_10_97_1
  doi: 10.1152/ajpendo.00448.2009
– ident: e_1_2_10_74_1
  doi: 10.1016/j.neuron.2010.10.027
– ident: e_1_2_10_34_1
  doi: 10.1038/374258a0
– ident: e_1_2_10_64_1
  doi: 10.1146/annurev.cellbio.16.1.521
– ident: e_1_2_10_98_1
  doi: 10.1152/japplphysiol.00901.2010
– ident: e_1_2_10_95_1
  doi: 10.1152/physiolgenomics.00042.2009
– ident: e_1_2_10_129_1
  doi: 10.1038/339055a0
– ident: e_1_2_10_94_1
  doi: 10.1242/jeb.079590
– ident: e_1_2_10_79_1
  doi: 10.1152/ajpcell.00487.2002
– ident: e_1_2_10_68_1
  doi: 10.1083/jcb.200307101
– volume: 12
  start-page: 107
  year: 2005
  ident: e_1_2_10_133_1
  article-title: Exercise‐induced gene expression changes in the rat spinal cord
  publication-title: Gene Expression
  doi: 10.3727/000000005783992115
  contributor:
    fullname: Perreau VM
– ident: e_1_2_10_101_1
  doi: 10.1126/science.1181046
– ident: e_1_2_10_141_1
  doi: 10.1152/physiolgenomics.90282.2008
– ident: e_1_2_10_54_1
  doi: 10.1016/0896-6273(94)90414-6
– ident: e_1_2_10_42_1
  doi: 10.1152/japplphysiol.00860.2011
– ident: e_1_2_10_32_1
  doi: 10.1136/jmg.2008.063693
– ident: e_1_2_10_125_1
  doi: 10.1128/MCB.01601-07
– ident: e_1_2_10_12_1
  doi: 10.1139/h98-019
– ident: e_1_2_10_48_1
  doi: 10.1111/j.1469-7793.1999.533ae.x
– ident: e_1_2_10_52_1
  doi: 10.1016/0896-6273(90)90336-E
– ident: e_1_2_10_57_1
  doi: 10.1083/jcb.68.3.752
– ident: e_1_2_10_66_1
  doi: 10.2337/diabetes.53.suppl_3.S59
– ident: e_1_2_10_96_1
  doi: 10.1152/ajpendo.90562.2008
– ident: e_1_2_10_119_1
  doi: 10.1523/JNEUROSCI.15-07-04796.1995
– ident: e_1_2_10_122_1
  doi: 10.1016/j.neulet.2006.05.036
– ident: e_1_2_10_10_1
  doi: 10.1371/journal.pone.0038029
– ident: e_1_2_10_43_1
  doi: 10.1371/journal.pone.0051066
– ident: e_1_2_10_84_1
  doi: 10.2337/diabetes.52.12.2874
– ident: e_1_2_10_35_1
  doi: 10.1038/nature01844
– ident: e_1_2_10_87_1
  doi: 10.1111/j.1469-7793.2000.t01-1-00221.x
– ident: e_1_2_10_45_1
  doi: 10.1083/jcb.83.2.357
– ident: e_1_2_10_121_1
  doi: 10.1002/mus.10558
– ident: e_1_2_10_46_1
  doi: 10.1038/338229a0
– ident: e_1_2_10_110_1
  doi: 10.1038/360753a0
– ident: e_1_2_10_113_1
  doi: 10.1126/science.7973664
– ident: e_1_2_10_117_1
  doi: 10.1002/(SICI)1097-0177(200005)218:1<94::AID-DVDY8>3.0.CO;2-Z
– ident: e_1_2_10_78_1
  doi: 10.1113/jphysiol.1971.sp009528
– ident: e_1_2_10_111_1
  doi: 10.1038/363266a0
– ident: e_1_2_10_69_1
  doi: 10.1523/JNEUROSCI.1255-09.2009
– ident: e_1_2_10_142_1
  doi: 10.1152/physiolgenomics.00257.2006
– ident: e_1_2_10_114_1
  doi: 10.1016/0896-6273(95)90173-6
– ident: e_1_2_10_82_1
  doi: 10.1101/gad.1525107
– ident: e_1_2_10_20_1
  doi: 10.1038/nature03112
– ident: e_1_2_10_41_1
  doi: 10.1007/s12035-011-8216-y
– ident: e_1_2_10_140_1
  doi: 10.1152/ajpendo.00467.2004
– ident: e_1_2_10_37_1
  doi: 10.1016/j.cell.2012.10.050
– ident: e_1_2_10_2_1
  doi: 10.1152/japplphysiol.00073.2002
– ident: e_1_2_10_30_1
  doi: 10.1111/j.1749-6632.1971.tb30750.x
– ident: e_1_2_10_40_1
  doi: 10.1152/jappl.1989.67.4.1409
– ident: e_1_2_10_26_1
  doi: 10.1002/mus.21819
– ident: e_1_2_10_76_1
  doi: 10.1113/jphysiol.1984.sp015059
– ident: e_1_2_10_16_1
  doi: 10.1002/syn.10001
– ident: e_1_2_10_60_1
  doi: 10.1523/JNEUROSCI.4663-10.2011
– ident: e_1_2_10_55_1
  doi: 10.1016/S0896-6273(00)80983-6
– ident: e_1_2_10_25_1
  doi: 10.1016/j.neuroscience.2011.05.070
– ident: e_1_2_10_83_1
  doi: 10.1006/bbrc.2000.3134
– ident: e_1_2_10_19_1
  doi: 10.1007/BF01186990
– ident: e_1_2_10_70_1
  doi: 10.1111/j.1471-4159.2010.06965.x
– ident: e_1_2_10_3_1
  doi: 10.1007/BF01637652
– ident: e_1_2_10_56_1
  doi: 10.1073/pnas.0437991100
– ident: e_1_2_10_145_1
  doi: 10.1111/j.1532-5415.2005.53467.x
– ident: e_1_2_10_88_1
  doi: 10.1006/bbrc.2000.3073
– ident: e_1_2_10_50_1
  doi: 10.1002/ajmg.a.30310
– ident: e_1_2_10_108_1
  doi: 10.1038/360755a0
– ident: e_1_2_10_62_1
  doi: 10.1074/jbc.M110.101311
– ident: e_1_2_10_99_1
  doi: 10.1113/jphysiol.2010.189860
– ident: e_1_2_10_38_1
  doi: 10.1126/stke.2442004re11
– ident: e_1_2_10_109_1
  doi: 10.1038/360757a0
– ident: e_1_2_10_14_1
  doi: 10.1016/j.aanat.2011.02.013
– ident: e_1_2_10_134_1
  doi: 10.1111/j.1471-4159.2009.06080.x
– ident: e_1_2_10_131_1
  doi: 10.1083/jcb.136.4.871
– ident: e_1_2_10_124_1
  doi: 10.1016/S0092-8674(03)00716-5
– ident: e_1_2_10_127_1
  doi: 10.1111/j.1471-4159.2004.02564.x
– ident: e_1_2_10_106_1
  doi: 10.1126/science.7770776
– ident: e_1_2_10_75_1
  doi: 10.1113/jphysiol.2002.030924
– ident: e_1_2_10_137_1
  doi: 10.1042/BST0310236
– ident: e_1_2_10_17_1
  doi: 10.1523/JNEUROSCI.09-02-00639.1989
– ident: e_1_2_10_36_1
  doi: 10.1038/372519a0
– ident: e_1_2_10_24_1
  doi: 10.1152/jappl.1997.83.1.59
– ident: e_1_2_10_90_1
  doi: 10.1016/S0896-6273(00)80873-9
– ident: e_1_2_10_128_1
  doi: 10.1152/ajpcell.00196.2005
– ident: e_1_2_10_9_1
  doi: 10.1016/j.bbr.2009.02.020
– ident: e_1_2_10_13_1
  doi: 10.1080/00207450590882172
– ident: e_1_2_10_86_1
  doi: 10.1042/BJ20082055
– ident: e_1_2_10_28_1
  doi: 10.1371/journal.pone.0034640
– ident: e_1_2_10_123_1
  doi: 10.1523/JNEUROSCI.21-16-06136.2001
– ident: e_1_2_10_61_1
  doi: 10.1038/nn1904
– ident: e_1_2_10_67_1
  doi: 10.1073/pnas.1209318109
– ident: e_1_2_10_5_1
  doi: 10.1007/BF01181487
– ident: e_1_2_10_115_1
  doi: 10.1038/373344a0
– ident: e_1_2_10_136_1
  doi: 10.1096/fj.01-0544fje
– ident: e_1_2_10_107_1
  doi: 10.1016/0012-1606(87)90467-2
– ident: e_1_2_10_77_1
  doi: 10.1113/jphysiol.1983.sp014721
– ident: e_1_2_10_116_1
  doi: 10.1038/373341a0
– ident: e_1_2_10_23_1
  doi: 10.1002/mus.1215
– ident: e_1_2_10_47_1
  doi: 10.1073/pnas.89.8.3330
– ident: e_1_2_10_72_1
  doi: 10.1016/j.neuron.2010.10.026
– ident: e_1_2_10_93_1
  doi: 10.1083/jcb.200407021
– ident: e_1_2_10_130_1
  doi: 10.1016/0896-6273(91)90301-F
– ident: e_1_2_10_6_1
  doi: 10.1016/S0168-0102(98)00026-1
– ident: e_1_2_10_8_1
  doi: 10.1016/S0031-9384(99)00248-6
– ident: e_1_2_10_33_1
  doi: 10.1093/hmg/ddh284
– ident: e_1_2_10_105_1
  doi: 10.1016/j.bbr.2011.09.027
– ident: e_1_2_10_65_1
  doi: 10.1074/jbc.M309068200
– ident: e_1_2_10_118_1
  doi: 10.1126/science.7839148
– ident: e_1_2_10_144_1
  doi: 10.1113/jphysiol.2009.179507
– ident: e_1_2_10_39_1
  doi: 10.1523/JNEUROSCI.10-08-02660.1990
– ident: e_1_2_10_29_1
  doi: 10.1002/ana.410220203
– ident: e_1_2_10_80_1
  doi: 10.1111/j.1471-4159.2004.02719.x
– ident: e_1_2_10_59_1
  doi: 10.1073/pnas.80.24.7636
– ident: e_1_2_10_103_1
  doi: 10.1002/mus.10511
– ident: e_1_2_10_31_1
  doi: 10.1523/JNEUROSCI.07-11-03654.1987
– ident: e_1_2_10_63_1
  doi: 10.1097/WNR.0b013e32834e7deb
– ident: e_1_2_10_143_1
  doi: 10.1016/j.cell.2008.06.051
– ident: e_1_2_10_11_1
  doi: 10.1038/nature07206
– ident: e_1_2_10_73_1
  doi: 10.1073/pnas.1002307107
– ident: e_1_2_10_15_1
  doi: 10.1523/JNEUROSCI.2953-11.2011
SSID ssj0001867
Score 2.4422538
SecondaryResourceType review_article
Snippet ABSTRACT Physical activity plays an important role in preventing chronic disease in adults and the elderly. Exercise has beneficial effects on the nervous...
Physical activity plays an important role in preventing chronic disease in adults and the elderly. Exercise has beneficial effects on the nervous system,...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 315
SubjectTerms active zone
aging
Aging - physiology
Animals
Exercise
Exercise - physiology
Humans
laminin
Muscular system
Nerve Tissue Proteins - metabolism
Neuregulin-1 - metabolism
Neuromuscular Junction - metabolism
Neuromuscular Junction - physiology
Physical fitness
PPAR gamma - metabolism
synapse
Title ROLE of exercise in maintaining the integrity of the neuromuscular junction
URI https://api.istex.fr/ark:/67375/WNG-J4R4WS6K-N/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmus.24095
https://www.ncbi.nlm.nih.gov/pubmed/24122772
https://www.proquest.com/docview/1498115478/abstract/
https://search.proquest.com/docview/1499151540
https://search.proquest.com/docview/1534827664
https://pubmed.ncbi.nlm.nih.gov/PMC4086464
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9NQ0K88P2RMZBBCPGSLk4utiOeENqYNlqkjmp9QLKS2BFlWjqtrYT46_HZTUb5EuItSs6JP-5yv7PPPwO8aCwabiWPRaMwdv46iSvnBuK8FlZWyFFamtAfjsThBI-m-XQLXnd7YQI_RD_hRpbh_9dk4GW12LsiDT1fLQbOHRW0wZyI9AgQja-oo4ioLaQvqth54WnHKpSke33JDV90jbr16--A5q_5kj_iWO-IDm7Bp64JIf_kbLBaVoP620_sjv_Zxttwcw1Q2ZugUXdgy7Z34fpwvQR_D47HH97vs3nDusOa2Kxl5-WsXYazJphDlCyQUDiAT4J0w9Nmuu_4rFf2xTlTUoj7MDnY__j2MF6fyBDXuUryWCHKRFpe1RY5z4xsLDc1naFOcZFRpSU-Pc5NgaqUKmsSbvMyN1WGdSMykT2A7Xbe2kfAjKq5MI2z_5KjK6RKVSTYVLVCm4rMRPC8Gxt9EYg3dKBYTrWrrvbdEsFLP2q9RHl5RplqMteno3f6CMd4eiKO9SiC3W5Y9dpIFy7qKRSxEUkVwbP-sTMvWjMpWztfeZmCMB8mf5HJiSFICoERPAya0lfIAaQ0dRFMBHJDh3oBovfefNLOPnuab3TRJtI7X3kV-XMv6OHkxF_s_LvoY7jhoB-GbLpd2F5eruwTB6-W1VNvR98BQrEgQA
link.rule.ids 230,315,786,790,891,1382,27957,27958,46329,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VVgJeuKGBAgEhxEu2cTI-VuIFoZaleyBtu-q-VFYOR2yrZlG7KyF-PR57k7JcQrxFyTjxMeP5xp58BnhVGSyZkSwSlcLI-us4yq0biHghjMyRoTS0oD8cid4ED6Z8ugFvm39hPD9Eu-BGluHmazJwWpDevWINPV9edqw_6vJrsGXNnbuAanxFHkVUbT6BUUXWD08bXqE42W2LrnmjLerYr7-Dmr9mTP6IZJ0r2r8NJ00jfAbKWWe5yDvFt5_4Hf-3lXfg1gqjhu-8Ut2FDVPfg-vD1S78feiPPw32wnkVNuc1hbM6PM9m9cIfNxFaUBl6HgqL8UmQbjjmTPsdl_ganlp_SjrxACb7e0fve9HqUIao4CrmkUKUsTQsLwwylpayMqws6Bh1Co1KlRmi1GOs7KLKpEqrmBme8TJPsahEKtKHsFnPa7MNYakKJsrKTgEZQ1tIZaobY5UXCk0i0jKAl83g6C-ee0N7luVE2-pq1y0BvHbD1kpkF2eUrCa5Ph590Ac4xuND0dejAHaacdUrO720gU9XESGRVAG8aB9bC6Ntk6w286WT6RLsw_gvMpxIgqQQGMAjrypthSxGShIbxAQg15SoFSCG7_Un9eyzY_pGG3AivfON05E_94IeTg7dxeN_F30ON3pHw4EefBz1n8BNiwTRJ9ftwObiYmmeWrS1yJ85o_oOQZYkYg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTZp44fsjMCAghHhJFycX2xVPiK2MdS2oo1ofkKwkdrRuWjptrYT46_HZTUb5EuItSs6JP-58v7MvPwO8rAxqZgSLeCUxsv46jgrrBqKs5EYUyFAYWtAfDPneGPcn2WQN3jT_wnh-iHbBjSzDzddk4Oe62r4iDT1bXHasO-pm12ADeZqQSu-MrrijiKnN5y_KyLrhSUMrFCfbbdEVZ7RB_fr1d0jz14TJH4Gs80S9m_ClaYNPQDntLOZFp_z2E73jfzbyFtxYItTwrVep27Bm6juwOVjuwd-F_ujjwW44q8LmtKZwWodn-bSe-8MmQgspQ89CYRE-CdINx5tpv-PSXsMT601JI-7BuLf7-d1etDySISozGWeRRBSxMKwoDTKWalEZpks6RJ0CIy1zQ4R6jOkuylzItIqZyfJMFymWFU95eh_W61ltHkKoZcm4ruwEkDO0hWQuuzFWRSnRJDzVAbxoxkade-YN5TmWE2Wrq1y3BPDKjVorkV-cUqqayNTR8L3axxEeHfK-Ggaw1QyrWlrppQ17upLoiIQM4Hn72NoXbZrktZktnEyXQB_Gf5HJiCJIcI4BPPCa0lbIIqQksSFMAGJFh1oB4vdefVJPjx3PN9pwE-mdr52K_LkX1GB86C4e_bvoM9j8tNNTBx-G_cdw3cJA9Jl1W7A-v1iYJxZqzYunzqS-A73jIxE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ROLE+of+exercise+in+maintaining+the+integrity+of+the+neuromuscular+junction&rft.jtitle=Muscle+%26+nerve&rft.au=Nishimune%2C+Hiroshi&rft.au=Stanford%2C+John+A.&rft.au=Mori%2C+Yasuo&rft.date=2014-03-01&rft.issn=0148-639X&rft.eissn=1097-4598&rft.volume=49&rft.issue=3&rft.spage=315&rft.epage=324&rft_id=info:doi/10.1002%2Fmus.24095&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mus_24095
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-639X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-639X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-639X&client=summon