Particle Manipulation with External Field; From Recent Advancement to Perspectives

Physical forces, such as dielectric, magnetic, electric, optical, and acoustic force, provide useful principles for the manipulation of particles, which are impossible or difficult with other approaches. Microparticles, including polymer particles, liquid droplets, and biological cells, can be trapp...

Full description

Saved in:
Bibliographic Details
Published inAnalytical Sciences Vol. 37; no. 1; pp. 69 - 78
Main Authors MIYAGAWA, Akihisa, OKADA, Tetsuo
Format Journal Article
LanguageEnglish
Published Singapore The Japan Society for Analytical Chemistry 01.01.2021
Springer Nature Singapore
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Physical forces, such as dielectric, magnetic, electric, optical, and acoustic force, provide useful principles for the manipulation of particles, which are impossible or difficult with other approaches. Microparticles, including polymer particles, liquid droplets, and biological cells, can be trapped at a particular position and are also transported to arbitrary locations in an appropriate external physical field. Since the force can be externally controlled by the field strength, we can evaluate physicochemical properties of particles from the shift of the particle location. Most of the manipulation studies are conducted for particles of sub-micrometer or larger dimensions, because the force exerted on nanomaterials or molecules is so weak that their direct manipulation is generally difficult. However, the behavior, interactions, and reactions of such small substances can be indirectly evaluated by observing microparticles, on which the targets are tethered, in a physical field. We review the recent advancements in the manipulation of particles using a physical force and discuss its potentials, advantages, and limitations from fundamental and practical perspectives.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0910-6340
1348-2246
DOI:10.2116/analsci.20SAR03