Circular HDAC9/microRNA-138/Sirtuin-1 Pathway Mediates Synaptic and Amyloid Precursor Protein Processing Deficits in Alzheimer’s Disease

Synaptic dysfunction and abnormal processing of amyloid precursor protein (APP) are early pathological features in Alzheimer’s disease (AD). Recently, non-coding RNAs such as microRNAs (miRNAs) and circular RNAs (circRNAs) have been reported to contribute to the pathogenesis of AD. We found an age-d...

Full description

Saved in:
Bibliographic Details
Published inNeuroscience bulletin Vol. 35; no. 5; pp. 877 - 888
Main Authors Lu, Yanjun, Tan, Lu, Wang, Xiong
Format Journal Article
LanguageEnglish
Published Singapore Springer Singapore 01.10.2019
Springer
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Synaptic dysfunction and abnormal processing of amyloid precursor protein (APP) are early pathological features in Alzheimer’s disease (AD). Recently, non-coding RNAs such as microRNAs (miRNAs) and circular RNAs (circRNAs) have been reported to contribute to the pathogenesis of AD. We found an age-dependent elevation of miR-138 in APP/PS1 (presenilin-1) mice. MiR-138 inhibited the expression of ADAM10 [a disintegrin and metalloproteinase domain-containing protein 10], promoted amyloid beta (Aβ) production, and induced synaptic and learning/memory deficits in APP/PS1 mice, while its suppression alleviated the AD-like phenotype in these mice. Overexpression of sirtuin 1 (Sirt1), a target of miR-138, ameliorated the miR-138-induced inhibition of ADAM10 and elevation of Aβ in vitro . The circRNA HDAC9 (circHDAC9) was predicted to contain a miR-138 binding site in several databases. Its expression was inversely correlated with miR-138 in both Aβ-oligomer-treated N2a cells and APP/PS1 mice, and it co-localized with miR-138 in the cytoplasm of N2a cells. CircHDAC9 acted as a miR-138 sponge, decreasing miR-138 expression, and reversing the Sirt1 suppression and excessive Aβ production induced by miR-138 in vitro . Moreover, circHDAC9 was decreased in the serum of both AD patients and individuals with mild cognitive impairment. These results suggest that the circHDAC9/miR-138/Sirt1 pathway mediates synaptic function and APP processing in AD, providing a potential therapeutic target for its treatment.
AbstractList Synaptic dysfunction and abnormal processing of amyloid precursor protein (APP) are early pathological features in Alzheimer’s disease (AD). Recently, non-coding RNAs such as microRNAs (miRNAs) and circular RNAs (circRNAs) have been reported to contribute to the pathogenesis of AD. We found an age-dependent elevation of miR-138 in APP/PS1 (presenilin-1) mice. MiR-138 inhibited the expression of ADAM10 [a disintegrin and metalloproteinase domain-containing protein 10], promoted amyloid beta (Aβ) production, and induced synaptic and learning/memory deficits in APP/PS1 mice, while its suppression alleviated the AD-like phenotype in these mice. Overexpression of sirtuin 1 (Sirt1), a target of miR-138, ameliorated the miR-138-induced inhibition of ADAM10 and elevation of Aβ in vitro . The circRNA HDAC9 (circHDAC9) was predicted to contain a miR-138 binding site in several databases. Its expression was inversely correlated with miR-138 in both Aβ-oligomer-treated N2a cells and APP/PS1 mice, and it co-localized with miR-138 in the cytoplasm of N2a cells. CircHDAC9 acted as a miR-138 sponge, decreasing miR-138 expression, and reversing the Sirt1 suppression and excessive Aβ production induced by miR-138 in vitro . Moreover, circHDAC9 was decreased in the serum of both AD patients and individuals with mild cognitive impairment. These results suggest that the circHDAC9/miR-138/Sirt1 pathway mediates synaptic function and APP processing in AD, providing a potential therapeutic target for its treatment.
Synaptic dysfunction and abnormal processing of amyloid precursor protein (APP) are early pathological features in Alzheimer's disease (AD). Recently, non-coding RNAs such as microRNAs (miRNAs) and circular RNAs (circRNAs) have been reported to contribute to the pathogenesis of AD. We found an age-dependent elevation of miR-138 in APP/PS1 (presenilin-1) mice. MiR-138 inhibited the expression of ADAM10 [a disintegrin and metalloproteinase domain-containing protein 10], promoted amyloid beta (Aβ) production, and induced synaptic and learning/memory deficits in APP/PS1 mice, while its suppression alleviated the AD-like phenotype in these mice. Overexpression of sirtuin 1 (Sirt1), a target of miR-138, ameliorated the miR-138-induced inhibition of ADAM10 and elevation of Aβ in vitro. The circRNA HDAC9 (circHDAC9) was predicted to contain a miR-138 binding site in several databases. Its expression was inversely correlated with miR-138 in both Aβ-oligomer-treated N2a cells and APP/PS1 mice, and it co-localized with miR-138 in the cytoplasm of N2a cells. CircHDAC9 acted as a miR-138 sponge, decreasing miR-138 expression, and reversing the Sirt1 suppression and excessive Aβ production induced by miR-138 in vitro. Moreover, circHDAC9 was decreased in the serum of both AD patients and individuals with mild cognitive impairment. These results suggest that the circHDAC9/miR-138/Sirt1 pathway mediates synaptic function and APP processing in AD, providing a potential therapeutic target for its treatment.Synaptic dysfunction and abnormal processing of amyloid precursor protein (APP) are early pathological features in Alzheimer's disease (AD). Recently, non-coding RNAs such as microRNAs (miRNAs) and circular RNAs (circRNAs) have been reported to contribute to the pathogenesis of AD. We found an age-dependent elevation of miR-138 in APP/PS1 (presenilin-1) mice. MiR-138 inhibited the expression of ADAM10 [a disintegrin and metalloproteinase domain-containing protein 10], promoted amyloid beta (Aβ) production, and induced synaptic and learning/memory deficits in APP/PS1 mice, while its suppression alleviated the AD-like phenotype in these mice. Overexpression of sirtuin 1 (Sirt1), a target of miR-138, ameliorated the miR-138-induced inhibition of ADAM10 and elevation of Aβ in vitro. The circRNA HDAC9 (circHDAC9) was predicted to contain a miR-138 binding site in several databases. Its expression was inversely correlated with miR-138 in both Aβ-oligomer-treated N2a cells and APP/PS1 mice, and it co-localized with miR-138 in the cytoplasm of N2a cells. CircHDAC9 acted as a miR-138 sponge, decreasing miR-138 expression, and reversing the Sirt1 suppression and excessive Aβ production induced by miR-138 in vitro. Moreover, circHDAC9 was decreased in the serum of both AD patients and individuals with mild cognitive impairment. These results suggest that the circHDAC9/miR-138/Sirt1 pathway mediates synaptic function and APP processing in AD, providing a potential therapeutic target for its treatment.
Synaptic dysfunction and abnormal processing of amyloid precursor protein (APP) are early pathological features in Alzheimer's disease (AD). Recently, non-coding RNAs such as microRNAs (miRNAs) and circular RNAs (circRNAs) have been reported to contribute to the pathogenesis of AD. We found an age-dependent elevation of miR-138 in APP/PS1 (presenilin-1) mice. MiR-138 inhibited the expression of ADAM10 [a disintegrin and metalloproteinase domain-containing protein 10], promoted amyloid beta (A[beta]) production, and induced synaptic and learning/memory deficits in APP/PS1 mice, while its suppression alleviated the AD-like phenotype in these mice. Overexpression of sirtuin 1 (Sirt1), a target of miR-138, ameliorated the miR-138-induced inhibition of ADAM10 and elevation of A[beta] in vitro. The circRNA HDAC9 (circHDAC9) was predicted to contain a miR-138 binding site in several databases. Its expression was inversely correlated with miR-138 in both A[beta]-oligomer-treated N2a cells and APP/PS1 mice, and it co-localized with miR-138 in the cytoplasm of N2a cells. CircHDAC9 acted as a miR-138 sponge, decreasing miR-138 expression, and reversing the Sirt1 suppression and excessive A[beta] production induced by miR-138 in vitro. Moreover, circHDAC9 was decreased in the serum of both AD patients and individuals with mild cognitive impairment. These results suggest that the circHDAC9/miR-138/Sirt1 pathway mediates synaptic function and APP processing in AD, providing a potential therapeutic target for its treatment.
Synaptic dysfunction and abnormal processing of amyloid precursor protein (APP) are early pathological features in Alzheimer's disease (AD). Recently, non-coding RNAs such as microRNAs (miRNAs) and circular RNAs (circRNAs) have been reported to contribute to the pathogenesis of AD. We found an age-dependent elevation of miR-138 in APP/PS1 (presenilin-1) mice. MiR-138 inhibited the expression of ADAM10 [a disintegrin and metalloproteinase domain-containing protein 10], promoted amyloid beta (Aβ) production, and induced synaptic and learning/memory deficits in APP/PS1 mice, while its suppression alleviated the AD-like phenotype in these mice. Overexpression of sirtuin 1 (Sirt1), a target of miR-138, ameliorated the miR-138-induced inhibition of ADAM10 and elevation of Aβ in vitro. The circRNA HDAC9 (circHDAC9) was predicted to contain a miR-138 binding site in several databases. Its expression was inversely correlated with miR-138 in both Aβ-oligomer-treated N2a cells and APP/PS1 mice, and it co-localized with miR-138 in the cytoplasm of N2a cells. CircHDAC9 acted as a miR-138 sponge, decreasing miR-138 expression, and reversing the Sirt1 suppression and excessive Aβ production induced by miR-138 in vitro. Moreover, circHDAC9 was decreased in the serum of both AD patients and individuals with mild cognitive impairment. These results suggest that the circHDAC9/miR-138/Sirt1 pathway mediates synaptic function and APP processing in AD, providing a potential therapeutic target for its treatment.
Audience Academic
Author Wang, Xiong
Tan, Lu
Lu, Yanjun
Author_xml – sequence: 1
  givenname: Yanjun
  surname: Lu
  fullname: Lu, Yanjun
  organization: Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
– sequence: 2
  givenname: Lu
  surname: Tan
  fullname: Tan, Lu
  organization: Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology
– sequence: 3
  givenname: Xiong
  surname: Wang
  fullname: Wang, Xiong
  email: tjhwangxiong@163.com
  organization: Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30887246$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustu1DAUjVARfcAPsECR2LBJx46d2NkgRTNAkQpUFNaW49zM3CqxBzsBDSvW_AG_x5fgMKWiCFVe3Kvrc44f5xwnB9ZZSJLHlJxSQsQi0DwveUZolRHCSpqRe8kRraoikzmVB7EvBcsEKcVhchzCFSElEYw_SA4ZkVLkvDxKvi_Rm6nXPj1b1ctqMaDx7v3bOqNMLi7RjxPajKYXetx80bv0DbSoRwjp5c7q7Ygm1bZN62HXO2zTCw9m8sH52LkR0M7VQAho1-kKOjQ4hjSO6_7rBnAA__Pbj5CuMIAO8DC53-k-wKPrepJ8fPniw_IsO3_36vWyPs9MIaoxaxg3rNBV12pSNFI3pKAVFJI3nFBTdAbA0EYKynLgDdOS64aVHXCdSzDA2UnyfK-7nZoBWgN29LpXW4-D9jvlNKrbOxY3au0-q1IUnEsaBZ5dC3j3aYIwqgGDgb7XFtwUVE4rTnnF8zJCn-6ha92DQtu5qGhmuKoFFVUuSDGjTv-DiquF6Ec0vcM4v0V48vcTbu7-x9cIyPeA6GYIHrobCCVqDo_ah0fF8Kjf4VEkkuQ_pOiXHtHN34D93VS2p4Z4jl2DV1du8jbaeBfrF_RP2kU
CitedBy_id crossref_primary_10_1007_s12035_023_03626_y
crossref_primary_10_1007_s11064_021_03314_0
crossref_primary_10_1016_j_tiv_2021_105271
crossref_primary_10_1016_j_biopha_2021_111826
crossref_primary_10_1002_jat_4203
crossref_primary_10_1002_wrna_1723
crossref_primary_10_3390_antiox9111095
crossref_primary_10_3390_genes14020353
crossref_primary_10_3389_fnins_2020_591138
crossref_primary_10_3389_fnins_2022_925300
crossref_primary_10_2174_1567205019666220613142303
crossref_primary_10_3389_fnagi_2020_00145
crossref_primary_10_1021_acs_analchem_4c03092
crossref_primary_10_1016_j_bbagrm_2024_195073
crossref_primary_10_1111_cns_14499
crossref_primary_10_3389_fnins_2019_00430
crossref_primary_10_3389_fnmol_2024_1398026
crossref_primary_10_1186_s40035_023_00386_6
crossref_primary_10_3390_pharmaceutics13091397
crossref_primary_10_1002_path_6021
crossref_primary_10_1007_s12035_022_02840_4
crossref_primary_10_1016_j_microc_2024_110310
crossref_primary_10_1080_21655979_2021_1999369
crossref_primary_10_3389_fncel_2024_1470641
crossref_primary_10_3389_fnins_2021_689188
crossref_primary_10_1007_s00018_021_03780_3
crossref_primary_10_1016_j_arr_2024_102483
crossref_primary_10_1016_j_ncrna_2023_11_011
crossref_primary_10_3389_fimmu_2022_852272
crossref_primary_10_3389_fnmol_2022_1078441
crossref_primary_10_1016_j_brainres_2022_147878
crossref_primary_10_1016_j_jchemneu_2023_102236
crossref_primary_10_1016_j_neubiorev_2021_10_047
crossref_primary_10_18632_aging_203989
crossref_primary_10_20517_2574_1209_2024_05
crossref_primary_10_1007_s11064_022_03563_7
crossref_primary_10_1093_jnen_nlac108
crossref_primary_10_3233_JAD_200010
crossref_primary_10_3390_jcm13226960
crossref_primary_10_2174_1567202619666220602125806
crossref_primary_10_1016_j_mcn_2023_103841
crossref_primary_10_1007_s11064_022_03820_9
crossref_primary_10_1007_s11596_023_2784_8
crossref_primary_10_1007_s12031_021_01882_y
crossref_primary_10_1007_s12035_024_03977_0
crossref_primary_10_3389_fped_2021_706012
crossref_primary_10_3390_ijms25116190
crossref_primary_10_2174_0113895575267301230919165827
crossref_primary_10_3390_biomedicines11102727
crossref_primary_10_3892_mmr_2019_10778
crossref_primary_10_1007_s12035_023_03849_z
crossref_primary_10_3389_fncel_2021_785433
crossref_primary_10_3390_molecules26175113
crossref_primary_10_1007_s12031_021_01900_z
crossref_primary_10_18632_aging_205015
crossref_primary_10_1016_j_arr_2023_102002
crossref_primary_10_3389_fneur_2020_538301
crossref_primary_10_1007_s12264_023_01072_3
crossref_primary_10_1096_fj_202001737RR
crossref_primary_10_4103_1673_5374_379017
crossref_primary_10_3389_fnagi_2021_691512
crossref_primary_10_3389_fnagi_2021_807764
crossref_primary_10_3389_fnmol_2023_1226413
crossref_primary_10_3389_fnagi_2024_1346978
crossref_primary_10_52586_4923
crossref_primary_10_1111_cns_14688
crossref_primary_10_3390_ijms241713480
crossref_primary_10_3892_ijmm_2022_5208
crossref_primary_10_4236_abb_2022_1312035
crossref_primary_10_1186_s12929_023_00954_y
crossref_primary_10_3390_biom12101505
crossref_primary_10_3892_etm_2021_11010
crossref_primary_10_1016_j_brainres_2021_147622
crossref_primary_10_1038_s42003_021_01705_1
crossref_primary_10_1016_j_gpb_2021_10_002
crossref_primary_10_1111_cns_14573
crossref_primary_10_3390_ijms23084134
crossref_primary_10_3389_fnmol_2022_960657
crossref_primary_10_1016_j_compbiomed_2023_107494
crossref_primary_10_1016_j_amjms_2023_11_001
crossref_primary_10_3389_fgene_2023_1231486
crossref_primary_10_1002_jnr_24591
crossref_primary_10_2174_1570159X18666200503024700
crossref_primary_10_14336_AD_2022_1123
crossref_primary_10_3389_fnagi_2022_1025473
crossref_primary_10_3389_fnmol_2022_836534
crossref_primary_10_1016_j_arr_2021_101425
crossref_primary_10_1371_journal_pgen_1010988
crossref_primary_10_1007_s11011_022_00912_x
crossref_primary_10_2174_1567202620666230721122957
crossref_primary_10_1177_17448069221144540
crossref_primary_10_3389_fnagi_2021_654978
crossref_primary_10_1039_D0FO01900C
crossref_primary_10_3389_fmolb_2019_00146
crossref_primary_10_1007_s11910_019_0995_y
crossref_primary_10_3390_ijms21249582
crossref_primary_10_3390_ijms24054308
crossref_primary_10_1016_j_bbr_2020_112503
crossref_primary_10_1007_s12031_024_02236_0
crossref_primary_10_1007_s11011_024_01520_7
crossref_primary_10_2174_1871527321666220829164211
crossref_primary_10_1186_s40035_020_00216_z
crossref_primary_10_1007_s11356_021_17478_3
crossref_primary_10_3389_fimmu_2022_908076
crossref_primary_10_3390_cells12222595
crossref_primary_10_3389_fnagi_2022_727805
crossref_primary_10_1016_j_arr_2023_101913
crossref_primary_10_1016_j_lfs_2020_117637
crossref_primary_10_1007_s12035_024_04066_y
crossref_primary_10_2174_0115680266293212240405042540
crossref_primary_10_1007_s11033_023_08729_2
Cites_doi 10.3233/JAD-180276
10.1016/j.biopsych.2017.07.023
10.1016/j.molcel.2015.03.027
10.1038/nature11993
10.1038/nn.3975
10.1007/s12017-014-8288-8
10.1007/s12264-018-0249-z
10.1038/mp.2017.136
10.1038/ncb1876
10.1016/j.pneurobio.2017.03.004
10.1016/j.neurobiolaging.2016.12.015
10.1006/exnr.2001.7754
10.3233/JAD-180259
10.18632/aging.101427
10.3233/JAD-2008-14103
10.3233/JAD-160468
10.3233/JAD-171020
10.1016/j.cell.2010.06.020
10.1093/hmg/ddx267
10.1101/gad.209619.112
10.1096/fj.201601308
10.1111/cns.12706
10.1016/j.febslet.2015.02.001
10.3892/or.2017.5782
10.3389/fgene.2016.00053
10.1038/srep38907
10.1016/j.bbr.2012.07.016
10.1016/j.jalz.2017.08.012
10.1001/archneur.61.1.59
10.3892/etm.2017.4426
10.3389/fnhum.2014.00178
10.1371/journal.pone.0061560
10.1016/j.jalz.2016.03.001
10.1038/s41593-018-0194-1
10.1016/j.yexcr.2018.03.042
10.1186/1471-2105-14-S2-S4
10.7554/eLife.05005
10.1126/science.aam8526
10.1016/j.npep.2018.07.001
ContentType Journal Article
Copyright Shanghai Institutes for Biological Sciences, CAS 2019
COPYRIGHT 2019 Springer
Copyright_xml – notice: Shanghai Institutes for Biological Sciences, CAS 2019
– notice: COPYRIGHT 2019 Springer
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1007/s12264-019-00361-0
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1995-8218
EndPage 888
ExternalDocumentID PMC6754481
A717927056
30887246
10_1007_s12264_019_00361_0
Genre Journal Article
GroupedDBID ---
-05
-0E
-56
-5G
-BR
-EM
-SE
-S~
-Y2
-~C
.86
.VR
06C
06D
0R~
0VX
0VY
123
1N0
29N
29~
2B.
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5VR
5VS
67N
6NX
8TC
92F
92I
92M
93N
95-
95.
95~
96X
9D9
9DE
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABKZE
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
CAJEE
CCEZO
CHBEP
CIEJG
COF
CS3
CSCUP
CW9
DDRTE
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
ESBYG
F5P
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG6
HLICF
HMJXF
HRMNR
HVGLF
HYE
HZ~
IAO
IEA
IHR
IJ-
IKXTQ
IWAJR
IXC
IXD
I~X
I~Z
J-C
JBSCW
JUIAU
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
OK1
PF0
PT4
Q--
Q-4
QOR
QOS
R-E
R89
R9I
ROL
RPM
RPX
RSV
RT5
S..
S16
S1Z
S27
S3A
S3B
SAP
SBL
SCL
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
SZN
T13
T8U
TCJ
TGQ
TSG
TUC
TUS
U1F
U1G
U2A
U5E
U5O
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WFFXF
WK8
YLTOR
Z7U
ZMTXR
ZOVNA
~A9
~MX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
AEIIB
7X8
5PM
ABRTQ
ID FETCH-LOGICAL-c579t-b34c35a9fda05b8ab0519e584b401c5fceec1b87132e4b3a84ab36fe4a28ece43
IEDL.DBID U2A
ISSN 1673-7067
1995-8218
IngestDate Thu Aug 21 13:40:43 EDT 2025
Thu Jul 10 22:04:09 EDT 2025
Tue Jun 17 21:23:21 EDT 2025
Tue Jun 10 20:32:15 EDT 2025
Wed Feb 19 02:13:15 EST 2025
Thu Apr 24 22:52:46 EDT 2025
Tue Jul 01 01:22:28 EDT 2025
Fri Feb 21 02:33:25 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Sirtuin-1
microRNA
Circular RNA
Synapse
Alzheimer’s disease
Memory
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c579t-b34c35a9fda05b8ab0519e584b401c5fceec1b87132e4b3a84ab36fe4a28ece43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s12264-019-00361-0.pdf
PMID 30887246
PQID 2194149426
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6754481
proquest_miscellaneous_2194149426
gale_infotracmisc_A717927056
gale_infotracacademiconefile_A717927056
pubmed_primary_30887246
crossref_primary_10_1007_s12264_019_00361_0
crossref_citationtrail_10_1007_s12264_019_00361_0
springer_journals_10_1007_s12264_019_00361_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Neuroscience bulletin
PublicationTitleAbbrev Neurosci. Bull
PublicationTitleAlternate Neurosci Bull
PublicationYear 2019
Publisher Springer Singapore
Springer
Publisher_xml – name: Springer Singapore
– name: Springer
References Salta, De Strooper (CR19) 2017; 31
Cogswell, Ward, Taylor, Waters, Shi, Cannon (CR11) 2008; 14
You, Vlatkovic, Babic, Will, Epstein, Tushev (CR8) 2015; 18
Donmez, Wang, Cohen, Guarente (CR35) 2010; 142
Gruner, Cortes-Lopez, Cooper, Bauer, Miura (CR16) 2016; 6
Luo, Chen, Xie, Wu (CR28) 2017; 38
Wang, Liu, Huang, Wang, Hou, Yang (CR7) 2018; 83
CR17
Wang, Veremeyko, Wong, El Fatimy, Wei, Cai (CR20) 2017; 51
Liu, Wang, Saijilafu, Jiao, Zhang, Zhou (CR27) 2013; 27
Zusso, Barbierato, Facci, Skaper, Giusti (CR4) 2018; 64
CR37
CR36
Grundman, Petersen, Ferris, Thomas, Aisen, Bennett (CR41) 2004; 61
Siegel, Obernosterer, Fiore, Oehmen, Bicker, Christensen (CR13) 2009; 11
Dong, Cao, Tan, Wang, Qi, Xiao (CR30) 2018; 63
Tian, Yuan, Yue (CR26) 2018; 367
Chen, Cai, Shen, Wang, Teng, Zhang (CR24) 2012; 235
Xie, Liu, Jiang, Liu, Song, Zhang (CR21) 2017; 55
Lutz, Milenkovic, Regelsberger, Kovacs (CR31) 2014; 16
Lu, Wang, Tao, Wang, Zhu, Guo (CR15) 2018; 23
Chang, Huang, Hsu, Weng, Horng, Huang (CR18) 2013; 14
Alzheimer’s (CR1) 2016; 12
Sun, Samimi, Gamez, Zare, Frost (CR3) 2018; 21
Yuan, Mo, Mo, He, Wu, Lin (CR29) 2017; 13
Lukiw, Circular (CR38) 2013; 4
Xu, Zhang, Luo, Wu, Zhou, Kong (CR33) 2018; 14
Kumar, Vijayan, Reddy (CR22) 2017; 26
Wang, Tan, Lu, Peng, Zhu, Zhang (CR14) 2015; 589
Schroder, Ansaloni, Schilling, Liu, Radke, Jaedicke (CR12) 2014; 8
Rybak-Wolf, Stottmeister, Glazar, Jens, Pino, Giusti (CR9) 2015; 58
Sun, Li, Zhu, Jin, Zeng, Liu (CR2) 2018; 34
Hansen, Jensen, Clausen, Bramsen, Finsen, Damgaard (CR10) 2013; 495
Lu, Xu (CR40) 2016; 7
Liu, Xu, Zhang, Huang, Yu, Zhu (CR25) 2017; 23
Ni, Xu, Zhan, Fan, Zhou, Jiang (CR34) 2018; 64
Sugo, Oshiro, Takemura, Kobayashi, Kohno, Uesaka (CR39) 2010; 31
Gordon, Holcomb, Jantzen, DiCarlo, Wilcock, Boyett (CR23) 2002; 173
Wang, Xu, Chen, Zhang, Zhang, Zhan (CR5) 2018; 10
Millan (CR6) 2017; 156
Kumar, Chaterjee, Sharma, Singh, Gupta, Gill (CR32) 2013; 8
G Siegel (361_CR13) 2009; 11
X Wang (361_CR14) 2015; 589
R Lu (361_CR15) 2018; 23
E Salta (361_CR19) 2017; 31
X Wang (361_CR7) 2018; 83
JP Cogswell (361_CR11) 2008; 14
W Sun (361_CR3) 2018; 21
X You (361_CR8) 2015; 18
Y Liu (361_CR25) 2017; 23
A Alzheimer’s (361_CR1) 2016; 12
M Grundman (361_CR41) 2004; 61
MI Lutz (361_CR31) 2014; 16
R Kumar (361_CR32) 2013; 8
M Zusso (361_CR4) 2018; 64
YT Dong (361_CR30) 2018; 63
S Kumar (361_CR22) 2017; 26
WJ Lukiw (361_CR38) 2013; 4
BL Sun (361_CR2) 2018; 34
Y Wang (361_CR20) 2017; 51
MJ Millan (361_CR6) 2017; 156
361_CR37
361_CR17
M Xu (361_CR33) 2018; 14
A Rybak-Wolf (361_CR9) 2015; 58
361_CR36
MN Gordon (361_CR23) 2002; 173
H Ni (361_CR34) 2018; 64
N Sugo (361_CR39) 2010; 31
CM Liu (361_CR27) 2013; 27
B Xie (361_CR21) 2017; 55
H Gruner (361_CR16) 2016; 6
TH Chang (361_CR18) 2013; 14
F Tian (361_CR26) 2018; 367
D Lu (361_CR40) 2016; 7
TB Hansen (361_CR10) 2013; 495
G Donmez (361_CR35) 2010; 142
Z Yuan (361_CR29) 2017; 13
SQ Chen (361_CR24) 2012; 235
J Schroder (361_CR12) 2014; 8
Z Wang (361_CR5) 2018; 10
J Luo (361_CR28) 2017; 38
References_xml – volume: 64
  start-page: 1149
  year: 2018
  end-page: 1161
  ident: CR34
  article-title: The GWAS Risk Genes for Depression May Be Actively Involved in Alzheimer’s Disease
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-180276
– volume: 83
  start-page: 395
  year: 2018
  end-page: 405
  ident: CR7
  article-title: A Novel microRNA-124/PTPN1 signal pathway mediates synaptic and memory deficits in Alzheimer’s disease
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2017.07.023
– volume: 58
  start-page: 870
  year: 2015
  end-page: 885
  ident: CR9
  article-title: Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2015.03.027
– volume: 495
  start-page: 384
  year: 2013
  end-page: 388
  ident: CR10
  article-title: Natural RNA circles function as efficient microRNA sponges
  publication-title: Nature
  doi: 10.1038/nature11993
– ident: CR37
– volume: 18
  start-page: 603
  year: 2015
  end-page: 610
  ident: CR8
  article-title: Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity
  publication-title: Nat Neurosci
  doi: 10.1038/nn.3975
– volume: 16
  start-page: 405
  year: 2014
  end-page: 414
  ident: CR31
  article-title: Distinct patterns of sirtuin expression during progression of Alzheimer’s disease
  publication-title: Neuromolecular Med
  doi: 10.1007/s12017-014-8288-8
– volume: 34
  start-page: 1111
  year: 2018
  end-page: 1118
  ident: CR2
  article-title: Clinical research on Alzheimer’s disease: progress and perspectives
  publication-title: Neurosci Bull
  doi: 10.1007/s12264-018-0249-z
– volume: 23
  start-page: 767
  year: 2018
  end-page: 776
  ident: CR15
  article-title: Reduced TRPC6 mRNA levels in the blood cells of patients with Alzheimer’s disease and mild cognitive impairment
  publication-title: Mol Psychiatry
  doi: 10.1038/mp.2017.136
– volume: 11
  start-page: 705
  year: 2009
  end-page: 716
  ident: CR13
  article-title: A functional screen implicates microRNA-138-dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1876
– volume: 156
  start-page: 1
  year: 2017
  end-page: 68
  ident: CR6
  article-title: Linking deregulation of non-coding RNA to the core pathophysiology of Alzheimer’s disease: An integrative review
  publication-title: Prog Neurobiol
  doi: 10.1016/j.pneurobio.2017.03.004
– volume: 51
  start-page: 156
  year: 2017
  end-page: 166
  ident: CR20
  article-title: Downregulation of miR-132/212 impairs S-nitrosylation balance and induces tau phosphorylation in Alzheimer’s disease
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2016.12.015
– volume: 173
  start-page: 183
  year: 2002
  end-page: 195
  ident: CR23
  article-title: Time course of the development of Alzheimer-like pathology in the doubly transgenic PS1 + APP mouse
  publication-title: Exp Neurol
  doi: 10.1006/exnr.2001.7754
– volume: 64
  start-page: 671
  year: 2018
  end-page: 688
  ident: CR4
  article-title: Neuroepigenetics and Alzheimer’s disease: an update
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-180259
– volume: 10
  start-page: 775
  year: 2018
  end-page: 788
  ident: CR5
  article-title: Identifying circRNA-associated-ceRNA networks in the hippocampus of Abeta1-42-induced Alzheimer’s disease-like rats using microarray analysis
  publication-title: Aging (Albany NY)
  doi: 10.18632/aging.101427
– volume: 14
  start-page: 27
  year: 2008
  end-page: 41
  ident: CR11
  article-title: Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-2008-14103
– volume: 55
  start-page: 509
  year: 2017
  end-page: 520
  ident: CR21
  article-title: Increased serum miR-206 level predicts conversion from amnestic mild cognitive impairment to Alzheimer’s disease: a 5-year follow-up study
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-160468
– volume: 63
  start-page: 283
  year: 2018
  end-page: 301
  ident: CR30
  article-title: Stimulation of SIRT1 attenuates the level of oxidative stress in the brains of APP/PS1 double transgenic mice and in primary neurons exposed to oligomers of the amyloid-beta peptide
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-171020
– volume: 142
  start-page: 320
  year: 2010
  end-page: 332
  ident: CR35
  article-title: SIRT1 suppresses beta-amyloid production by activating the alpha-secretase gene ADAM10
  publication-title: Cell
  doi: 10.1016/j.cell.2010.06.020
– volume: 26
  start-page: 3808
  year: 2017
  end-page: 3822
  ident: CR22
  article-title: MicroRNA-455-3p as a potential peripheral biomarker for Alzheimer’s disease
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddx267
– volume: 27
  start-page: 1473
  year: 2013
  end-page: 1483
  ident: CR27
  article-title: MicroRNA-138 and SIRT1 form a mutual negative feedback loop to regulate mammalian axon regeneration
  publication-title: Genes Dev
  doi: 10.1101/gad.209619.112
– volume: 31
  start-page: 424
  year: 2017
  end-page: 433
  ident: CR19
  article-title: microRNA-132: a key noncoding RNA operating in the cellular phase of Alzheimer’s disease
  publication-title: FASEB J
  doi: 10.1096/fj.201601308
– volume: 23
  start-page: 590
  year: 2017
  end-page: 604
  ident: CR25
  article-title: Effective expression of Drebrin in hippocampus improves cognitive function and alleviates lesions of Alzheimer’s disease in APP (swe)/PS1 (DeltaE9) mice
  publication-title: CNS Neurosci Ther
  doi: 10.1111/cns.12706
– ident: CR17
– volume: 589
  start-page: 726
  year: 2015
  end-page: 729
  ident: CR14
  article-title: MicroRNA-138 promotes tau phosphorylation by targeting retinoic acid receptor alpha
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2015.02.001
– volume: 38
  start-page: 1067
  year: 2017
  end-page: 1074
  ident: CR28
  article-title: MicroRNA-138 inhibits cell proliferation in hepatocellular carcinoma by targeting Sirt1
  publication-title: Oncol Rep
  doi: 10.3892/or.2017.5782
– volume: 7
  start-page: 53
  year: 2016
  ident: CR40
  article-title: Mini Review: Circular RNAs as Potential Clinical Biomarkers for Disorders in the Central Nervous System
  publication-title: Front Genet
  doi: 10.3389/fgene.2016.00053
– volume: 31
  start-page: 1521
  year: 2010
  end-page: 1532
  ident: CR39
  article-title: Nucleocytoplasmic translocation of HDAC9 regulates gene expression and dendritic growth in developing cortical neurons
  publication-title: Eur J Neurosci
– volume: 6
  start-page: 38907
  year: 2016
  ident: CR16
  article-title: CircRNA accumulation in the aging mouse brain
  publication-title: Sci Rep
  doi: 10.1038/srep38907
– volume: 235
  start-page: 1
  year: 2012
  end-page: 6
  ident: CR24
  article-title: Age-related changes in brain metabolites and cognitive function in APP/PS1 transgenic mice
  publication-title: Behav Brain Res
  doi: 10.1016/j.bbr.2012.07.016
– volume: 14
  start-page: 215
  year: 2018
  end-page: 229
  ident: CR33
  article-title: A systematic integrated analysis of brain expression profiles reveals YAP1 and other prioritized hub genes as important upstream regulators in Alzheimer’s disease
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2017.08.012
– ident: CR36
– volume: 61
  start-page: 59
  year: 2004
  end-page: 66
  ident: CR41
  article-title: Mild cognitive impairment can be distinguished from Alzheimer disease and normal aging for clinical trials
  publication-title: Arch Neurol
  doi: 10.1001/archneur.61.1.59
– volume: 13
  start-page: 3417
  year: 2017
  end-page: 3423
  ident: CR29
  article-title: Suppressive effect of microRNA-138 on the proliferation and invasion of osteosarcoma cells via targeting SIRT1
  publication-title: Exp Ther Med
  doi: 10.3892/etm.2017.4426
– volume: 14
  start-page: S4
  issue: Suppl 2
  year: 2013
  ident: CR18
  article-title: An enhanced computational platform for investigating the roles of regulatory RNA and for identifying functional RNA motifs
  publication-title: BMC Bioinformatics
– volume: 8
  start-page: 501
  year: 2014
  ident: CR12
  article-title: MicroRNA-138 is a potential regulator of memory performance in humans
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2014.00178
– volume: 8
  start-page: e61560
  year: 2013
  ident: CR32
  article-title: Sirtuin1: a promising serum protein marker for early detection of Alzheimer’s disease
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0061560
– volume: 12
  start-page: 459
  year: 2016
  end-page: 509
  ident: CR1
  article-title: 2016 Alzheimer’s disease facts and figures
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2016.03.001
– volume: 21
  start-page: 1038
  year: 2018
  end-page: 1048
  ident: CR3
  article-title: Pathogenic tau-induced piRNA depletion promotes neuronal death through transposable element dysregulation in neurodegenerative tauopathies
  publication-title: Nat Neurosci
  doi: 10.1038/s41593-018-0194-1
– volume: 367
  start-page: 232
  year: 2018
  end-page: 240
  ident: CR26
  article-title: MiR-138/SIRT1 axis is implicated in impaired learning and memory abilities of cerebral ischemia/reperfusion injured rats
  publication-title: Exp Cell Res
  doi: 10.1016/j.yexcr.2018.03.042
– volume: 4
  start-page: 307
  year: 2013
  ident: CR38
  article-title: circRNA) in Alzheimer’s disease (AD
  publication-title: Front Genet
– volume: 61
  start-page: 59
  year: 2004
  ident: 361_CR41
  publication-title: Arch Neurol
  doi: 10.1001/archneur.61.1.59
– volume: 51
  start-page: 156
  year: 2017
  ident: 361_CR20
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2016.12.015
– volume: 14
  start-page: S4
  issue: Suppl 2
  year: 2013
  ident: 361_CR18
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-14-S2-S4
– volume: 64
  start-page: 671
  year: 2018
  ident: 361_CR4
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-180259
– volume: 235
  start-page: 1
  year: 2012
  ident: 361_CR24
  publication-title: Behav Brain Res
  doi: 10.1016/j.bbr.2012.07.016
– volume: 27
  start-page: 1473
  year: 2013
  ident: 361_CR27
  publication-title: Genes Dev
  doi: 10.1101/gad.209619.112
– volume: 23
  start-page: 590
  year: 2017
  ident: 361_CR25
  publication-title: CNS Neurosci Ther
  doi: 10.1111/cns.12706
– volume: 18
  start-page: 603
  year: 2015
  ident: 361_CR8
  publication-title: Nat Neurosci
  doi: 10.1038/nn.3975
– volume: 367
  start-page: 232
  year: 2018
  ident: 361_CR26
  publication-title: Exp Cell Res
  doi: 10.1016/j.yexcr.2018.03.042
– volume: 8
  start-page: e61560
  year: 2013
  ident: 361_CR32
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0061560
– volume: 589
  start-page: 726
  year: 2015
  ident: 361_CR14
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2015.02.001
– volume: 38
  start-page: 1067
  year: 2017
  ident: 361_CR28
  publication-title: Oncol Rep
  doi: 10.3892/or.2017.5782
– volume: 495
  start-page: 384
  year: 2013
  ident: 361_CR10
  publication-title: Nature
  doi: 10.1038/nature11993
– volume: 64
  start-page: 1149
  year: 2018
  ident: 361_CR34
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-180276
– volume: 11
  start-page: 705
  year: 2009
  ident: 361_CR13
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1876
– volume: 13
  start-page: 3417
  year: 2017
  ident: 361_CR29
  publication-title: Exp Ther Med
  doi: 10.3892/etm.2017.4426
– volume: 58
  start-page: 870
  year: 2015
  ident: 361_CR9
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2015.03.027
– volume: 10
  start-page: 775
  year: 2018
  ident: 361_CR5
  publication-title: Aging (Albany NY)
  doi: 10.18632/aging.101427
– volume: 173
  start-page: 183
  year: 2002
  ident: 361_CR23
  publication-title: Exp Neurol
  doi: 10.1006/exnr.2001.7754
– volume: 63
  start-page: 283
  year: 2018
  ident: 361_CR30
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-171020
– volume: 26
  start-page: 3808
  year: 2017
  ident: 361_CR22
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddx267
– volume: 14
  start-page: 27
  year: 2008
  ident: 361_CR11
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-2008-14103
– volume: 31
  start-page: 1521
  year: 2010
  ident: 361_CR39
  publication-title: Eur J Neurosci
– volume: 55
  start-page: 509
  year: 2017
  ident: 361_CR21
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-160468
– ident: 361_CR17
  doi: 10.7554/eLife.05005
– volume: 156
  start-page: 1
  year: 2017
  ident: 361_CR6
  publication-title: Prog Neurobiol
  doi: 10.1016/j.pneurobio.2017.03.004
– volume: 23
  start-page: 767
  year: 2018
  ident: 361_CR15
  publication-title: Mol Psychiatry
  doi: 10.1038/mp.2017.136
– volume: 142
  start-page: 320
  year: 2010
  ident: 361_CR35
  publication-title: Cell
  doi: 10.1016/j.cell.2010.06.020
– volume: 4
  start-page: 307
  year: 2013
  ident: 361_CR38
  publication-title: Front Genet
– ident: 361_CR37
  doi: 10.1126/science.aam8526
– volume: 8
  start-page: 501
  year: 2014
  ident: 361_CR12
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2014.00178
– volume: 6
  start-page: 38907
  year: 2016
  ident: 361_CR16
  publication-title: Sci Rep
  doi: 10.1038/srep38907
– volume: 31
  start-page: 424
  year: 2017
  ident: 361_CR19
  publication-title: FASEB J
  doi: 10.1096/fj.201601308
– ident: 361_CR36
  doi: 10.1016/j.npep.2018.07.001
– volume: 21
  start-page: 1038
  year: 2018
  ident: 361_CR3
  publication-title: Nat Neurosci
  doi: 10.1038/s41593-018-0194-1
– volume: 7
  start-page: 53
  year: 2016
  ident: 361_CR40
  publication-title: Front Genet
  doi: 10.3389/fgene.2016.00053
– volume: 34
  start-page: 1111
  year: 2018
  ident: 361_CR2
  publication-title: Neurosci Bull
  doi: 10.1007/s12264-018-0249-z
– volume: 83
  start-page: 395
  year: 2018
  ident: 361_CR7
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2017.07.023
– volume: 16
  start-page: 405
  year: 2014
  ident: 361_CR31
  publication-title: Neuromolecular Med
  doi: 10.1007/s12017-014-8288-8
– volume: 14
  start-page: 215
  year: 2018
  ident: 361_CR33
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2017.08.012
– volume: 12
  start-page: 459
  year: 2016
  ident: 361_CR1
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2016.03.001
SSID ssj0060734
Score 2.5241349
Snippet Synaptic dysfunction and abnormal processing of amyloid precursor protein (APP) are early pathological features in Alzheimer’s disease (AD). Recently,...
Synaptic dysfunction and abnormal processing of amyloid precursor protein (APP) are early pathological features in Alzheimer's disease (AD). Recently,...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 877
SubjectTerms Advertising executives
Aged
Aged, 80 and over
Alzheimer Disease - genetics
Alzheimer Disease - metabolism
Alzheimer Disease - pathology
Alzheimer's disease
Amyloid beta-protein
Amyloid beta-Protein Precursor - genetics
Amyloid beta-Protein Precursor - metabolism
Anatomy
Anesthesiology
Animals
Biomedical and Life Sciences
Biomedicine
Female
Hippocampus - metabolism
Hippocampus - pathology
Histone Deacetylases - genetics
Histone Deacetylases - metabolism
Human Physiology
Humans
Male
Mice
Mice, Transgenic
MicroRNA
MicroRNAs - genetics
MicroRNAs - metabolism
Middle Aged
Neurology
Neurosciences
Original
Original Article
Pain Medicine
Repressor Proteins - genetics
Repressor Proteins - metabolism
RNA, Circular - genetics
RNA, Circular - metabolism
Sirtuin 1 - genetics
Sirtuin 1 - metabolism
Synapses - genetics
Synapses - metabolism
Synapses - pathology
Title Circular HDAC9/microRNA-138/Sirtuin-1 Pathway Mediates Synaptic and Amyloid Precursor Protein Processing Deficits in Alzheimer’s Disease
URI https://link.springer.com/article/10.1007/s12264-019-00361-0
https://www.ncbi.nlm.nih.gov/pubmed/30887246
https://www.proquest.com/docview/2194149426
https://pubmed.ncbi.nlm.nih.gov/PMC6754481
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZtAqWX0nedFyoUemhN1rL8Ojq72S4tWULThfQkJFkmhqw32F5Ceuq5_6B_r78kM1p7Uy8l0NOalSxkz2g0n2fmEyHvAsmksiyfWRS4PBqAHUxCQK1RqDzkS2OZzfKdhpMZ_3wenLdFYXWX7d6FJK2lvit2w5pPgL6JiyQqMNxDsh0AdsdErhlLO_sbgtLaWHIY-W4Exrgtlfn3GL3taNMo_7UrbWZMboRN7W40fkqetG4kTVdyf0YemPI5eXTSBspfkF_DorIZpnQySofJ4Rzz7r5OUyQDPDwrqmZZlK5HT8H_u5Y39MQe2GFqenZTSjAimsoyo-kc0HyR0dMKP8rXiwquFng6Jm3LC2BqdGSQg6KpKfydXv64MMXcVH9-_q7paBX7eUlm4-Nvw4nbHrvg6iBKGlf5XPuBTPJMDgIVS4VengFHRQEW00EO26r2FAAtnxmufBlzqfwwN1yy2GjD_Vdkq1yU5g2hOs_iUGU64iHj2tMS8BFTuWSG5cFAKod43dsXuuUkx6MxLsUdmzJKTIDEhJWYGDjkw_qeqxUjx72936NQBS5XGFnLtuoA5ofEVyIFOJuwCNxAh-z1esIy073mt51aCGzC3LTSLJa1AJvPAWeCq-OQ1ys1WU_MRyPOOLREPQVad0B2735LWVxYlu8QqQljzyEfO1UTrXmp73nenf_rvkseM1wNNjtxj2w11dLsg5fVqAOynY6Pjqb4--n7l-MDu8huAWkDIR0
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELagSMAFlb8SKGAkJA4QdeM4f8dol2qB7qqiXak3y3YcNVI3WyVZVeXEmTfo6_VJOuNNtmSFKnGLYsdyMuPPM5mZz4R8DCSTyrJ8ZlHg8mgAOJiE4LVGofKQL41lNst3Go5n_PtJcNIWhdVdtnsXkrRIfVvshjWf4PomLpKowHD3yQMwBmLU5RlLO_wNQWltLDmMfDcCMG5LZf49Rm872gTlv3alzYzJjbCp3Y32t8mT1oyk6UruT8k9Uz4jDydtoPw5-TMsKpthSsejdJjszTHv7uc0RTLAvaOiapZF6Xr0EOy_C3lJJ_bADlPTo8tSAohoKsuMpnPw5ouMHlb4U75eVHC1wNMxaVteAFOjI4McFE1N4XZ69uvUFHNTXf--quloFft5QWb7X4-HY7c9dsHVQZQ0rvK59gOZ5JkcBCqWCq08A4aKAl9MBzlsq9pT4Gj5zHDly5hL5Ye54ZLFRhvuvyRb5aI0rwjVeRaHKtMRDxnXnpbgHzGVS2ZYHgykcojXfX2hW05yPBrjTNyyKaPEBEhMWImJgUM-r585XzFy3Nn7EwpV4HKFkbVsqw5gfkh8JVJwZxMWgRnokN1eT1hmutf8oVMLgU2Ym1aaxbIWgPkc_EwwdRyys1KT9cR8BHHGoSXqKdC6A7J791vK4tSyfIdITRh7DvnSqZpo4aW-431f_1_39-TR-HhyIA6-TX-8IY8ZrgybqbhLtppqad6CxdWod3aB3QAXUSEA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFBZbB2UvY_d67TYNBnvYTGJZvj2aZCG7NIR1gb4JSZapoXGK7VC6pz3vH-zv7ZfsHNlOmzAKezPWsZCtc_U55xMhbwPJpLIon1kUuDwagh5MQohao1B5iJfGMlvlOwunC_75NDi90cVvq937lGTb04AoTWUzuMjywXXjG_Z_QhicuAioAlPfJfc4dgMDRy9Y2uviEBjY5pXDyHcjUMxd28y_59gyTbsK-oaF2q2e3EmhWss0eUgedC4lTVseeETumPIx2T_ukuZPyK9RUdlqUzodp6NksMQavG-zFIEBBydF1ayL0vXoHHzBS3lFj-3hHaamJ1elBIWiqSwzmi4hsi8yOq_wB329quBqhSdl0q7VAJZGxwbxKJqawu30_MeZKZam-vPzd03HbR7oKVlMPn4fTd3uCAZXB1HSuMrn2g9kkmdyGKhYKvT4DDgtCuIyHeRgYrWnIOjymeHKlzGXyg9zwyWLjTbcf0b2ylVpDgjVeRaHKtMRDxnXnpYQKzGVS2ZYHgylcojXf32hO3xyPCbjXFwjK-OOCdgxYXdMDB3yfvPMRYvOcSv1O9xUgaILM2vZdSDA-hAES6QQ2iYsApfQIUdblCByemv4Tc8WAoewTq00q3UtQP9ziDnB7XHI85ZNNgvzUaEzDiPRFgNtCBDpe3ukLM4s4neIMIWx55APPauJTtXUt7zvi_8jf0325-OJ-Ppp9uWQ3GcoGLZo8YjsNdXavATnq1GvrHz9BS1vJTM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Circular+HDAC9%2FmicroRNA-138%2FSirtuin-1+Pathway+Mediates+Synaptic+and+Amyloid+Precursor+Protein+Processing+Deficits+in+Alzheimer%E2%80%99s+Disease&rft.jtitle=Neuroscience+bulletin&rft.au=Lu%2C+Yanjun&rft.au=Tan%2C+Lu&rft.au=Wang%2C+Xiong&rft.date=2019-10-01&rft.issn=1673-7067&rft.eissn=1995-8218&rft.volume=35&rft.issue=5&rft.spage=877&rft.epage=888&rft_id=info:doi/10.1007%2Fs12264-019-00361-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12264_019_00361_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1673-7067&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1673-7067&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1673-7067&client=summon