EEG Source Imaging Enhances the Decoding of Complex Right-Hand Motor Imagery Tasks
Goal: Sensorimotor-based brain-computer interfaces (BCIs) have achieved successful control of real and virtual devices in up to three dimensions; however, the traditional sensor-based paradigm limits the intuitive use of these systems. Many control signals for state-of-the-art BCIs involve imagining...
Saved in:
Published in | IEEE transactions on biomedical engineering Vol. 63; no. 1; pp. 4 - 14 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Goal: Sensorimotor-based brain-computer interfaces (BCIs) have achieved successful control of real and virtual devices in up to three dimensions; however, the traditional sensor-based paradigm limits the intuitive use of these systems. Many control signals for state-of-the-art BCIs involve imagining the movement of body parts that have little to do with the output command, revealing a cognitive disconnection between the user's intent and the action of the end effector. Therefore, there is a need to develop techniques that can identify with high spatial resolution the self-modulated neural activity reflective of the actions of a helpful output device. Methods: We extend previous EEG source imaging (ESI) work to decoding natural hand/wrist manipulations by applying a novel technique to classifying four complex motor imaginations of the right hand: flexion, extension, supination, and pronation. Results: We report an increase of up to 18.6% for individual task classification and 12.7% for overall classification using the proposed ESI approach over the traditional sensor-based method. Conclusion: ESI is able to enhance BCI performance of decoding complex right-hand motor imagery tasks. Significance: This study may lead to the development of BCI systems with naturalistic and intuitive motor imaginations, thus facilitating broad use of noninvasive BCIs. |
---|---|
AbstractList | Goal: Sensorimotor-based brain-computer interfaces (BCIs) have achieved successful control of real and virtual devices in up to three dimensions; however, the traditional sensor-based paradigm limits the intuitive use of these systems. Many control signals for state-of-the-art BCIs involve imagining the movement of body parts that have little to do with the output command, revealing a cognitive disconnection between the user's intent and the action of the end effector. Therefore, there is a need to develop techniques that can identify with high spatial resolution the self-modulated neural activity reflective of the actions of a helpful output device. Methods: We extend previous EEG source imaging (ESI) work to decoding natural hand/wrist manipulations by applying a novel technique to classifying four complex motor imaginations of the right hand: flexion, extension, supination, and pronation. Results: We report an increase of up to 18.6% for individual task classification and 12.7% for overall classification using the proposed ESI approach over the traditional sensor-based method. Conclusion: ESI is able to enhance BCI performance of decoding complex right-hand motor imagery tasks. Significance: This study may lead to the development of BCI systems with naturalistic and intuitive motor imaginations, thus facilitating broad use of noninvasive BCIs. Sensorimotor-based brain-computer interfaces (BCIs) have achieved successful control of real and virtual devices in up to three dimensions; however, the traditional sensor-based paradigm limits the intuitive use of these systems. Many control signals for state-of-the-art BCIs involve imagining the movement of body parts that have little to do with the output command, revealing a cognitive disconnection between the user's intent and the action of the end effector. Therefore, there is a need to develop techniques that can identify with high spatial resolution the self-modulated neural activity reflective of the actions of a helpful output device. We extend previous EEG source imaging (ESI) work to decoding natural hand/wrist manipulations by applying a novel technique to classifying four complex motor imaginations of the right hand: flexion, extension, supination, and pronation. We report an increase of up to 18.6% for individual task classification and 12.7% for overall classification using the proposed ESI approach over the traditional sensor-based method. ESI is able to enhance BCI performance of decoding complex right-hand motor imagery tasks. This study may lead to the development of BCI systems with naturalistic and intuitive motor imaginations, thus facilitating broad use of noninvasive BCIs. Sensorimotor-based brain-computer interfaces (BCIs) have achieved successful control of real and virtual devices in up to three dimensions; however, the traditional sensor-based paradigm limits the intuitive use of these systems. Many control signals for state-of-the-art BCIs involve imagining the movement of body parts that have little to do with the output command, revealing a cognitive disconnection between the user's intent and the action of the end effector. Therefore, there is a need to develop techniques that can identify with high spatial resolution the self-modulated neural activity reflective of the actions of a helpful output device.GOALSensorimotor-based brain-computer interfaces (BCIs) have achieved successful control of real and virtual devices in up to three dimensions; however, the traditional sensor-based paradigm limits the intuitive use of these systems. Many control signals for state-of-the-art BCIs involve imagining the movement of body parts that have little to do with the output command, revealing a cognitive disconnection between the user's intent and the action of the end effector. Therefore, there is a need to develop techniques that can identify with high spatial resolution the self-modulated neural activity reflective of the actions of a helpful output device.We extend previous EEG source imaging (ESI) work to decoding natural hand/wrist manipulations by applying a novel technique to classifying four complex motor imaginations of the right hand: flexion, extension, supination, and pronation.METHODSWe extend previous EEG source imaging (ESI) work to decoding natural hand/wrist manipulations by applying a novel technique to classifying four complex motor imaginations of the right hand: flexion, extension, supination, and pronation.We report an increase of up to 18.6% for individual task classification and 12.7% for overall classification using the proposed ESI approach over the traditional sensor-based method.RESULTSWe report an increase of up to 18.6% for individual task classification and 12.7% for overall classification using the proposed ESI approach over the traditional sensor-based method.ESI is able to enhance BCI performance of decoding complex right-hand motor imagery tasks.CONCLUSIONESI is able to enhance BCI performance of decoding complex right-hand motor imagery tasks.This study may lead to the development of BCI systems with naturalistic and intuitive motor imaginations, thus facilitating broad use of noninvasive BCIs.SIGNIFICANCEThis study may lead to the development of BCI systems with naturalistic and intuitive motor imaginations, thus facilitating broad use of noninvasive BCIs. |
Author | Edelman, Bradley J. He, Bin Baxter, Bryan |
Author_xml | – sequence: 1 givenname: Bradley J. surname: Edelman fullname: Edelman, Bradley J. organization: Department of Biomedical Engineering, University of Minnesota – sequence: 2 givenname: Bryan surname: Baxter fullname: Baxter, Bryan organization: Department of Biomedical Engineering, University of Minnesota – sequence: 3 givenname: Bin surname: He fullname: He, Bin email: binhe@umn.edu organization: Department of Biomedical Engineering and the Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26276986$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks9v0zAcxS00xLrBH4CQUCQuXFL82_EFCUrYJm1CGr1brvNN65HYJU4R--9x1m6CHdAutmx_3pOf_U7QUYgBEHpN8JwQrD8sP1_Vc4qJmFMuFSP0GZoRIaqSCkaO0AxjUpWaan6MTlK6yUtecfkCHVNJldSVnKHruj4rvsfd4KC46O3ah3VRh40NDlIxbqD4Ai42025si0Xstx38Lq79ejOW5zY0xVUc43CnhOG2WNr0I71Ez1vbJXh1mE_R8mu9XJyXl9_OLhafLksnlB5LYVcrzaSTEmyLtbOaUUE0541krWx0SyRRDW1lW1kpbB6AiVbZigFtqoadoo972-1u1UPjIIyD7cx28L0dbk203vx7EvzGrOMvwxWRldTZ4P3BYIg_d5BG0_vkoOtsgLhLhqh8I04pkU9ApdCVUvgpaA6pKWcqo-8eoTf5I0J-szuKYaqZyNTbv3M-BLz_wwyoPeCGmNIArXF-tKOPU2zfGYLN1BYztcVMbTGHtmQleaS8N_-f5s1e4wHggVdEU0kY-wPa8chJ |
CODEN | IEBEAX |
CitedBy_id | crossref_primary_10_3389_fnbot_2023_1271967 crossref_primary_10_1142_S0129065721500386 crossref_primary_10_1007_s12559_022_10077_5 crossref_primary_10_1016_j_jneumeth_2020_108740 crossref_primary_10_1109_TNSRE_2021_3132162 crossref_primary_10_1016_j_bspc_2024_106215 crossref_primary_10_1088_1741_2552_ab882e crossref_primary_10_1109_THMS_2021_3115094 crossref_primary_10_1016_j_bspc_2022_103855 crossref_primary_10_1016_j_heliyon_2024_e30406 crossref_primary_10_3389_fnhum_2022_1032724 crossref_primary_10_1088_1741_2552_aa8ce3 crossref_primary_10_1002_hbm_26638 crossref_primary_10_1007_s10548_018_0668_1 crossref_primary_10_1371_journal_pone_0162657 crossref_primary_10_1109_ACCESS_2020_2983182 crossref_primary_10_1016_j_ultrasmedbio_2021_01_025 crossref_primary_10_1109_JBHI_2024_3452701 crossref_primary_10_1038_s41598_022_15252_0 crossref_primary_10_1115_1_4046311 crossref_primary_10_1371_journal_pone_0168766 crossref_primary_10_1016_j_jneumeth_2024_110161 crossref_primary_10_1109_RBME_2024_3449790 crossref_primary_10_1109_TBME_2018_2874167 crossref_primary_10_3390_biomimetics10030187 crossref_primary_10_1109_ACCESS_2019_2934018 crossref_primary_10_1088_1741_2560_13_5_056017 crossref_primary_10_1016_j_jneumeth_2024_110136 crossref_primary_10_1155_2017_2986423 crossref_primary_10_3389_fmech_2017_00003 crossref_primary_10_1109_TIM_2024_3500057 crossref_primary_10_3233_JIFS_202046 crossref_primary_10_1002_jdn_10166 crossref_primary_10_1088_1741_2552_ad038d crossref_primary_10_1109_TNSRE_2022_3154369 crossref_primary_10_1109_TCDS_2022_3194603 crossref_primary_10_1007_s11571_021_09676_z crossref_primary_10_3389_fnins_2018_00227 crossref_primary_10_1109_ACCESS_2019_2915614 crossref_primary_10_1016_j_bspc_2019_101748 crossref_primary_10_3390_s17091937 crossref_primary_10_1371_journal_pone_0188293 crossref_primary_10_3389_fnins_2021_797990 crossref_primary_10_1088_1741_2552_abd007 crossref_primary_10_1109_TAFFC_2017_2768030 crossref_primary_10_1016_j_neucom_2019_02_006 crossref_primary_10_3390_s20164629 crossref_primary_10_1371_journal_pone_0178410 crossref_primary_10_3389_fninf_2019_00047 crossref_primary_10_3389_fnins_2022_865594 crossref_primary_10_1016_j_engappai_2024_108473 crossref_primary_10_1109_TNSRE_2022_3143836 crossref_primary_10_1109_TNSRE_2022_3208710 crossref_primary_10_1126_scirobotics_aaw6844 crossref_primary_10_1155_2017_5708937 crossref_primary_10_3390_signals2030024 crossref_primary_10_1093_pnasnexus_pgae145 crossref_primary_10_1038_s41598_025_87569_5 crossref_primary_10_1371_journal_pone_0174161 crossref_primary_10_1371_journal_pone_0198786 crossref_primary_10_1109_ACCESS_2024_3371904 crossref_primary_10_3389_fnins_2017_00691 crossref_primary_10_1109_TBME_2018_2799661 crossref_primary_10_1109_TNSRE_2024_3486551 crossref_primary_10_3389_fnhum_2018_00340 crossref_primary_10_1109_TNSRE_2023_3249831 crossref_primary_10_1007_s11332_017_0379_0 crossref_primary_10_1038_s41598_024_79202_8 crossref_primary_10_1371_journal_pone_0190715 crossref_primary_10_1109_TNSRE_2019_2936987 crossref_primary_10_1109_TNSRE_2020_2981659 crossref_primary_10_1088_1741_2552_aaf12e crossref_primary_10_3390_electronics7030038 crossref_primary_10_1016_j_neuroimage_2018_03_048 crossref_primary_10_1093_gigascience_giaa098 crossref_primary_10_1109_TBME_2018_2890291 crossref_primary_10_1038_s41598_018_26609_9 crossref_primary_10_3233_JIFS_181309 crossref_primary_10_1016_j_cmpb_2024_108425 crossref_primary_10_1088_1741_2552_abce70 crossref_primary_10_1109_JBHI_2023_3278747 crossref_primary_10_1155_2018_9354207 crossref_primary_10_1371_journal_pone_0221510 crossref_primary_10_1113_JP286639 crossref_primary_10_3390_brainsci10120965 crossref_primary_10_1007_s11571_024_10159_0 crossref_primary_10_1007_s11704_021_0587_2 crossref_primary_10_1109_TNSRE_2024_3454088 crossref_primary_10_1109_TBME_2023_3265376 crossref_primary_10_1109_TMI_2020_3025608 crossref_primary_10_3390_bioengineering10060649 crossref_primary_10_1088_1741_2552_adbec1 crossref_primary_10_1186_s12938_018_0534_0 crossref_primary_10_1109_ACCESS_2019_2940034 crossref_primary_10_1016_j_neuroimage_2021_118463 crossref_primary_10_1007_s10586_024_04818_4 crossref_primary_10_1016_j_brs_2016_07_003 crossref_primary_10_1088_1741_2552_aba7cd crossref_primary_10_1109_TNNLS_2022_3202569 crossref_primary_10_1109_TNSRE_2023_3327907 crossref_primary_10_3390_brainsci14020114 crossref_primary_10_1016_j_patrec_2019_03_017 crossref_primary_10_3390_electronics13030565 crossref_primary_10_1109_TBME_2017_2725140 crossref_primary_10_1109_TNSRE_2021_3088637 crossref_primary_10_3233_JID_220001 crossref_primary_10_1016_j_cobme_2017_11_004 crossref_primary_10_3389_fnhum_2019_00128 crossref_primary_10_11834_jig_230031 crossref_primary_10_1109_TBME_2016_2613936 crossref_primary_10_3389_fnins_2023_1303242 crossref_primary_10_1162_neco_a_01183 crossref_primary_10_1016_j_neunet_2020_01_027 crossref_primary_10_1080_2326263X_2024_2400741 crossref_primary_10_1109_TSP_2017_2752690 crossref_primary_10_3389_fnhum_2022_830221 crossref_primary_10_1016_j_bspc_2021_103054 crossref_primary_10_1016_j_ifacol_2021_12_016 crossref_primary_10_1088_1741_2552_aa86d0 crossref_primary_10_1038_s41598_019_46310_9 crossref_primary_10_1016_j_ifacol_2021_12_019 crossref_primary_10_1186_s40708_024_00224_z crossref_primary_10_3389_fnins_2021_642251 crossref_primary_10_1109_JBHI_2019_2922976 crossref_primary_10_1109_TNSRE_2018_2817924 crossref_primary_10_1109_MSMC_2017_2778458 crossref_primary_10_1088_1741_2552_adb994 crossref_primary_10_3390_neurosci5020012 crossref_primary_10_1016_j_neunet_2020_01_022 crossref_primary_10_15302_J_ENG_2015078 crossref_primary_10_1109_TNSRE_2018_2873061 crossref_primary_10_1371_journal_pone_0182578 crossref_primary_10_1088_1741_2552_ac1ade crossref_primary_10_3390_brainsci13020240 crossref_primary_10_1007_s11571_024_10100_5 crossref_primary_10_1088_1741_2552_ad4914 crossref_primary_10_3390_s21175746 crossref_primary_10_34133_cbsystems_0118 crossref_primary_10_3389_fnsys_2021_578875 crossref_primary_10_1088_1741_2552_ab405f crossref_primary_10_1088_1741_2552_ac4ed0 crossref_primary_10_1109_TNSRE_2019_2895064 crossref_primary_10_1109_TNSRE_2017_2726779 crossref_primary_10_3389_fnins_2021_658930 crossref_primary_10_1088_1741_2552_aa6baf crossref_primary_10_1016_j_bspc_2021_103194 crossref_primary_10_32604_cmc_2024_050528 crossref_primary_10_1109_TNSRE_2023_3330500 crossref_primary_10_1016_j_jneumeth_2022_109593 crossref_primary_10_1016_j_bspc_2024_106837 crossref_primary_10_1088_1741_2552_acb386 crossref_primary_10_1155_2019_5618303 crossref_primary_10_1016_j_cmpb_2020_105722 crossref_primary_10_1109_TNSRE_2023_3323509 crossref_primary_10_1088_1741_2552_ac07bd crossref_primary_10_1016_j_bspc_2023_105160 crossref_primary_10_1007_s10548_018_00696_3 crossref_primary_10_1007_s11517_025_03340_y crossref_primary_10_1016_j_tibtech_2017_03_008 crossref_primary_10_1007_s00521_023_08665_z crossref_primary_10_1093_cercor_bhaa234 crossref_primary_10_1109_THMS_2018_2830647 crossref_primary_10_1109_TBME_2016_2628958 crossref_primary_10_1016_j_compbiomed_2024_109608 crossref_primary_10_1109_TBME_2018_2863198 crossref_primary_10_1007_s11063_023_11185_5 crossref_primary_10_1038_s41598_022_08490_9 crossref_primary_10_1109_ACCESS_2018_2809453 crossref_primary_10_1371_journal_pone_0207516 crossref_primary_10_1142_S0129065719500011 crossref_primary_10_1016_j_neuroimage_2016_06_017 crossref_primary_10_1146_annurev_bioeng_062117_120853 crossref_primary_10_7717_peerj_12027 crossref_primary_10_1109_TNSRE_2019_2953121 crossref_primary_10_1038_s41597_020_0535_2 crossref_primary_10_3389_fncom_2016_00055 crossref_primary_10_1007_s11571_020_09626_1 crossref_primary_10_1007_s11571_022_09852_9 crossref_primary_10_1109_ACCESS_2019_2917327 crossref_primary_10_1109_TNSRE_2018_2877987 crossref_primary_10_1016_j_bspc_2019_01_008 crossref_primary_10_1109_ACCESS_2017_2751069 crossref_primary_10_1007_s11760_023_02965_6 crossref_primary_10_1109_TCDS_2017_2766258 crossref_primary_10_1016_j_neuroimage_2024_120802 crossref_primary_10_1088_1741_2552_abf68b crossref_primary_10_3389_fnins_2023_1129049 crossref_primary_10_3390_brainsci13091237 crossref_primary_10_1080_27706710_2023_2285052 crossref_primary_10_1088_1742_6596_1123_1_012004 crossref_primary_10_1186_s12984_017_0307_1 crossref_primary_10_1016_j_neulet_2018_12_045 crossref_primary_10_1088_1741_2552_abc760 crossref_primary_10_1007_s00521_020_05624_w crossref_primary_10_1016_j_neuroimage_2020_116820 crossref_primary_10_3389_fneur_2019_00126 crossref_primary_10_1016_j_bspc_2024_106081 |
Cites_doi | 10.1109/TBME.1987.326056 10.1126/science.7792606 10.1152/jn.00239.2010 10.1109/TBME.2014.2312397 10.1109/97.566704 10.1523/JNEUROSCI.6107-09.2010 10.1126/science.8332915 10.1371/journal.pone.0026322 10.1073/pnas.0403504101 10.1016/S0140-6736(12)61816-9 10.1007/978-1-4614-5227-0_2 10.1109/TBME.2011.2139210 10.1016/0167-8760(84)90014-X 10.1016/j.medengphy.2011.11.001 10.1109/TNSRE.2005.847386 10.1109/TBME.2013.2283970 10.1109/IEMBS.2006.260128 10.1016/S1388-2457(99)00141-8 10.1109/TBME.2012.2228645 10.1016/j.clinph.2009.05.006 10.1016/j.jneumeth.2007.06.031 10.1016/S0013-4694(97)00080-1 10.1523/JNEUROSCI.5171-07.2008 10.1088/1741-2560/1/3/002 10.1109/JPROC.2015.2407272 10.1016/S0304-3940(00)01471-3 10.1093/cercor/11.4.312 10.1186/1743-0003-11-153 10.1063/1.2398883 10.1142/S233954781450023X 10.1016/j.neuroimage.2011.06.084 10.1109/10.16463 10.1088/1741-2560/10/4/046003 10.1109/TNSRE.2010.2077654 10.1109/TBME.2013.2270283 10.1097/00001756-200503150-00001 10.1109/TNSRE.2008.2003384 10.1088/1741-2560/2/4/L02 10.1155/2007/79642 10.1049/iet-spr.2008.0235 10.1109/TBME.2014.2300164 10.1109/EMBC.2014.6943840 10.1155/2011/879716 10.1016/j.neuron.2014.07.022 10.1038/nature11076 10.1016/j.neuroimage.2009.10.028 10.1016/j.clinph.2004.08.017 10.1088/1741-2560/6/6/066001 10.1109/TBME.2013.2265260 10.1007/978-1-4614-5227-0_12 10.1109/TBME.2013.2281976 10.1109/86.847808 10.1109/NER.2015.7146593 10.1097/00004728-199803000-00032 10.3389/fnins.2012.00151 10.1152/jn.90531.2008 10.1109/TBME.2013.2294203 10.1007/s11517-008-0345-8 10.1109/TBME.2000.880100 10.1016/j.neuroimage.2005.12.003 10.1002/hbm.20195 10.1088/1741-2560/4/2/002 10.1007/s00221-002-1166-x |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 5PM |
DOI | 10.1109/TBME.2015.2467312 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Technology Research Database MEDLINE Materials Research Database Engineering Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-2531 |
EndPage | 14 |
ExternalDocumentID | PMC4716869 3903442531 26276986 10_1109_TBME_2015_2467312 7192613 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institutes of Health grantid: R01 EB00643 funderid: 10.13039/100000002 – fundername: National Science Foundation grantid: CBET-1264782; IGERT DGE-1069104 funderid: 10.13039/100000001 – fundername: NIBIB NIH HHS grantid: R01 EB006433 |
GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD ESBDL F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 5PM |
ID | FETCH-LOGICAL-c579t-5abb936c66eaf09ca93251944d63f6d9f1617d2f6f8a65a8a6e35f7a83e2d8d3 |
IEDL.DBID | RIE |
ISSN | 0018-9294 1558-2531 |
IngestDate | Thu Aug 21 18:11:24 EDT 2025 Fri Jul 11 02:32:32 EDT 2025 Fri Jul 11 08:55:28 EDT 2025 Fri Jul 11 02:03:14 EDT 2025 Mon Jun 30 08:30:08 EDT 2025 Mon Jul 21 05:42:58 EDT 2025 Thu Apr 24 22:57:18 EDT 2025 Tue Jul 01 03:28:27 EDT 2025 Wed Aug 27 02:52:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | brain mapping EEG source imaging (ESI) motor imagery (MI) Brain–computer interface (BCI) neuroimaging |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the IEEE by sending an email to pubs-permissions@ieee.org. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c579t-5abb936c66eaf09ca93251944d63f6d9f1617d2f6f8a65a8a6e35f7a83e2d8d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/7192613 |
PMID | 26276986 |
PQID | 1751302935 |
PQPubID | 85474 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4716869 proquest_miscellaneous_1765987706 ieee_primary_7192613 proquest_miscellaneous_1793242216 crossref_primary_10_1109_TBME_2015_2467312 proquest_miscellaneous_1751992437 crossref_citationtrail_10_1109_TBME_2015_2467312 pubmed_primary_26276986 proquest_journals_1751302935 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-01-01 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on biomedical engineering |
PublicationTitleAbbrev | TBME |
PublicationTitleAlternate | IEEE Trans Biomed Eng |
PublicationYear | 2016 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref53 ref52 ref11 ref54 ref10 gao (ref8) 2014; 61 ref16 ref19 ref18 schieber (ref55) 1993; 261 ref51 ref50 ref46 ref45 ref48 ref42 ref41 ref43 ref49 ref7 ref9 ref4 ref3 ref6 tikhonov (ref29) 1977; 32 ref5 ref40 ref35 ref34 ref37 ref31 ref30 ref33 ref32 müller-putz (ref44) 2008; 10 ref2 ref1 ref39 ref38 he (ref47) 2011; 58 ref24 ref23 ref26 ref25 ref64 ref20 ref63 ref22 pfurtscheller (ref17) 1999; 110 ref65 ref21 ref28 ref27 lai (ref36) 2005; 116 ref60 ref62 ref61 |
References_xml | – ident: ref32 doi: 10.1109/TBME.1987.326056 – ident: ref52 doi: 10.1126/science.7792606 – ident: ref48 doi: 10.1152/jn.00239.2010 – ident: ref11 doi: 10.1109/TBME.2014.2312397 – ident: ref39 doi: 10.1109/97.566704 – ident: ref64 doi: 10.1523/JNEUROSCI.6107-09.2010 – volume: 261 start-page: 489 year: 1993 ident: ref55 article-title: How somatotopic is the motor cortex hand area? publication-title: Science doi: 10.1126/science.8332915 – ident: ref15 doi: 10.1371/journal.pone.0026322 – ident: ref13 doi: 10.1073/pnas.0403504101 – ident: ref2 doi: 10.1016/S0140-6736(12)61816-9 – ident: ref1 doi: 10.1007/978-1-4614-5227-0_2 – volume: 58 start-page: 1918 year: 2011 ident: ref47 article-title: Electrophysiological imaging of brain activity and connectivity-challenges and opportunities publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2011.2139210 – ident: ref30 doi: 10.1016/0167-8760(84)90014-X – ident: ref59 doi: 10.1016/j.medengphy.2011.11.001 – ident: ref25 doi: 10.1109/TNSRE.2005.847386 – ident: ref49 doi: 10.1109/TBME.2013.2283970 – ident: ref27 doi: 10.1109/IEMBS.2006.260128 – volume: 110 start-page: 1842 year: 1999 ident: ref17 article-title: Event-related EEG/MEG synchronization and desynchronization: Basic principles publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(99)00141-8 – ident: ref5 doi: 10.1109/TBME.2012.2228645 – ident: ref61 doi: 10.1016/j.clinph.2009.05.006 – ident: ref28 doi: 10.1016/j.jneumeth.2007.06.031 – ident: ref41 doi: 10.1016/S0013-4694(97)00080-1 – ident: ref63 doi: 10.1523/JNEUROSCI.5171-07.2008 – ident: ref24 doi: 10.1088/1741-2560/1/3/002 – ident: ref12 doi: 10.1109/JPROC.2015.2407272 – ident: ref46 doi: 10.1016/S0304-3940(00)01471-3 – ident: ref54 doi: 10.1093/cercor/11.4.312 – ident: ref60 doi: 10.1186/1743-0003-11-153 – ident: ref35 doi: 10.1063/1.2398883 – ident: ref18 doi: 10.1142/S233954781450023X – ident: ref51 doi: 10.1016/j.neuroimage.2011.06.084 – ident: ref33 doi: 10.1109/10.16463 – ident: ref16 doi: 10.1088/1741-2560/10/4/046003 – ident: ref14 doi: 10.1109/TNSRE.2010.2077654 – ident: ref6 doi: 10.1109/TBME.2013.2270283 – ident: ref56 doi: 10.1097/00001756-200503150-00001 – ident: ref22 doi: 10.1109/TNSRE.2008.2003384 – ident: ref21 doi: 10.1088/1741-2560/2/4/L02 – ident: ref45 doi: 10.1155/2007/79642 – ident: ref62 doi: 10.1049/iet-spr.2008.0235 – volume: 61 start-page: 1436 year: 2014 ident: ref8 article-title: Visual and auditory brain-computer interfaces publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2014.2300164 – ident: ref43 doi: 10.1109/EMBC.2014.6943840 – ident: ref42 doi: 10.1155/2011/879716 – ident: ref65 doi: 10.1016/j.neuron.2014.07.022 – ident: ref3 doi: 10.1038/nature11076 – ident: ref23 doi: 10.1016/j.neuroimage.2009.10.028 – volume: 116 start-page: 456 year: 2005 ident: ref36 article-title: Estimation of in vivo human brain-to-skull conductivity ratio from simultaneous extra- and intra-cranial electrical potential recordings publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2004.08.017 – ident: ref50 doi: 10.1088/1741-2560/6/6/066001 – ident: ref7 doi: 10.1109/TBME.2013.2265260 – ident: ref19 doi: 10.1007/978-1-4614-5227-0_12 – ident: ref9 doi: 10.1109/TBME.2013.2281976 – volume: 32 start-page: 1320 year: 1977 ident: ref29 article-title: Solutions of ill-posed problems publication-title: Am Math Soc – volume: 10 start-page: 52 year: 2008 ident: ref44 article-title: Better than random? A closer look on BCI results publication-title: Int J Bioelectromagn – ident: ref4 doi: 10.1109/86.847808 – ident: ref38 doi: 10.1109/NER.2015.7146593 – ident: ref31 doi: 10.1097/00004728-199803000-00032 – ident: ref20 doi: 10.3389/fnins.2012.00151 – ident: ref53 doi: 10.1152/jn.90531.2008 – ident: ref10 doi: 10.1109/TBME.2013.2294203 – ident: ref58 doi: 10.1007/s11517-008-0345-8 – ident: ref34 doi: 10.1109/TBME.2000.880100 – ident: ref40 doi: 10.1016/j.neuroimage.2005.12.003 – ident: ref37 doi: 10.1002/hbm.20195 – ident: ref26 doi: 10.1088/1741-2560/4/2/002 – ident: ref57 doi: 10.1007/s00221-002-1166-x |
SSID | ssj0014846 |
Score | 2.607147 |
Snippet | Goal: Sensorimotor-based brain-computer interfaces (BCIs) have achieved successful control of real and virtual devices in up to three dimensions; however, the... Sensorimotor-based brain-computer interfaces (BCIs) have achieved successful control of real and virtual devices in up to three dimensions; however, the... |
SourceID | pubmedcentral proquest pubmed crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4 |
SubjectTerms | Adolescent Adult Brain mapping Brain Mapping - methods Brain-computer interface Brain-Computer Interfaces Classification Decoding Devices Disengaging EEG source imaging Electrodes Electroencephalography Electroencephalography - methods Female Hand - physiology Humans Imagination - physiology Imaging Integrated circuits Male Motor imagery Motors Neuroimaging Robot sensing systems Scalp Surfaces Tasks Three dimensional Time-frequency analysis Young Adult |
Title | EEG Source Imaging Enhances the Decoding of Complex Right-Hand Motor Imagery Tasks |
URI | https://ieeexplore.ieee.org/document/7192613 https://www.ncbi.nlm.nih.gov/pubmed/26276986 https://www.proquest.com/docview/1751302935 https://www.proquest.com/docview/1751992437 https://www.proquest.com/docview/1765987706 https://www.proquest.com/docview/1793242216 https://pubmed.ncbi.nlm.nih.gov/PMC4716869 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VHhAcWmh5pBRkJE6IbBPHduIjj5QFKRzKIvUWOX6oqCWpursS9NfX42SjbVWtuFiRMpHszNj-xuP5BuAdzVPWKE5jzXzDqHGxpE7Ghhep1UigJjDBufohpr_Y91N-ugUfxlwYa224fGYn-Bhi-abTSzwqO8o9HBFYovaBd9z6XK0xYsCKPiknSf0EppINEcw0kUezT1WJl7j4hPplIUuxgg0VNBcSM6jXtqNQX-U-qHn3xuTaFnS8C9Wq8_3Nk_PJctFM9PUdXsf_Hd0T2BmwKPnYG89T2LLtHjxeYyjcg4fVEHvfh5Oy_Ep-hrN-8u1PKG5EyvYMrWZOPIwkX7wnizsh6RzBZebC_iUngadkqlpDqs679-FLe_WPzNT8fP4MZsfl7PM0HioyxJrnchFz1TQyE1oIq1witfLoz0NAxozInDDSobdkqBOuUIIr39iMu1wVmaWmMNlz2G671r4EklhnBHdKOY_IPIgs0rxhqW5UoTPmpIwgWeml1gNbORbNuKiD15LIGrVao1brQasRvB8_ueypOjYJ76MGRsHh50dwuFJ-PUzmee0RFoZ3ZcYjeDu-9tMQYyuqtd2yl5ES2R03yQguizxPxCYZiRCXpl7mRW9zYx9XNhtBfssaRwGkCr_9pv19FijDPQQRhZAH94_6FTzy_2Y4WTqE7cXV0r72WGvRvAmT7AZf2CJ- |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5VReJx4NFSGihgJE6IbBPHduIjj5QtND2UIPUWOX6oqCWpursS8OvxJNloW1UrLlakjCXbM7Y_ezzfALylacxqxWmomS8YNS6U1MnQ8Cy2GgnUBAY4F8di-oN9PeWnG_B-jIWx1naPz-wEPztfvmn1Aq_K9lMPRwSmqL3j930e99Fao8-AZX1YThT7KUwlG3yYcST3y49Fjs-4-IT6hSGJMYcNFTQVEmOoVzakLsPKbWDz5pvJlU3o4BEUy-b3b0_OJ4t5PdF_bzA7_m__HsPDAY2SD735PIEN22zBgxWOwi24Wwze9204yfMv5Ht3208Of3XpjUjenKHdzIgHkuSzP8viXkhaR3ChubC_yUnHVDJVjSFF6w_4XU179YeUanY-ewrlQV5-moZDToZQ81TOQ67qWiZCC2GVi6RWHv95EMiYEYkTRjo8LxnqhMuU4MoXNuEuVVliqclMsgObTdvYXSCRdUZwp5TzmMzDyCxOaxbrWmU6YU7KAKKlXio98JVj2oyLqju3RLJCrVao1WrQagDvxiqXPVnHOuFt1MAoOAx-AHtL5VfDdJ5VHmOhg1cmPIA3428_EdG7ohrbLnoZKZHfcZ2M4DJL00isk5EIcmnsZZ71Nje2cWmzAaTXrHEUQLLw63-an2cdabgHISIT8vntvX4N96ZlcVQdHR5_ewH3_TgN90x7sDm_WtiXHnnN61fdhPsHoUIlxw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEG+Source+Imaging+Enhances+the+Decoding+of+Complex+Right-Hand+Motor+Imagery+Tasks&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Edelman%2C+Bradley+J&rft.au=Baxter%2C+Bryan&rft.au=He%2C+Bin&rft.date=2016-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=63&rft.issue=1&rft.spage=4&rft_id=info:doi/10.1109%2FTBME.2015.2467312&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3903442531 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |