EEG Source Imaging Enhances the Decoding of Complex Right-Hand Motor Imagery Tasks

Goal: Sensorimotor-based brain-computer interfaces (BCIs) have achieved successful control of real and virtual devices in up to three dimensions; however, the traditional sensor-based paradigm limits the intuitive use of these systems. Many control signals for state-of-the-art BCIs involve imagining...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 63; no. 1; pp. 4 - 14
Main Authors Edelman, Bradley J., Baxter, Bryan, He, Bin
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Goal: Sensorimotor-based brain-computer interfaces (BCIs) have achieved successful control of real and virtual devices in up to three dimensions; however, the traditional sensor-based paradigm limits the intuitive use of these systems. Many control signals for state-of-the-art BCIs involve imagining the movement of body parts that have little to do with the output command, revealing a cognitive disconnection between the user's intent and the action of the end effector. Therefore, there is a need to develop techniques that can identify with high spatial resolution the self-modulated neural activity reflective of the actions of a helpful output device. Methods: We extend previous EEG source imaging (ESI) work to decoding natural hand/wrist manipulations by applying a novel technique to classifying four complex motor imaginations of the right hand: flexion, extension, supination, and pronation. Results: We report an increase of up to 18.6% for individual task classification and 12.7% for overall classification using the proposed ESI approach over the traditional sensor-based method. Conclusion: ESI is able to enhance BCI performance of decoding complex right-hand motor imagery tasks. Significance: This study may lead to the development of BCI systems with naturalistic and intuitive motor imaginations, thus facilitating broad use of noninvasive BCIs.
AbstractList Goal: Sensorimotor-based brain-computer interfaces (BCIs) have achieved successful control of real and virtual devices in up to three dimensions; however, the traditional sensor-based paradigm limits the intuitive use of these systems. Many control signals for state-of-the-art BCIs involve imagining the movement of body parts that have little to do with the output command, revealing a cognitive disconnection between the user's intent and the action of the end effector. Therefore, there is a need to develop techniques that can identify with high spatial resolution the self-modulated neural activity reflective of the actions of a helpful output device. Methods: We extend previous EEG source imaging (ESI) work to decoding natural hand/wrist manipulations by applying a novel technique to classifying four complex motor imaginations of the right hand: flexion, extension, supination, and pronation. Results: We report an increase of up to 18.6% for individual task classification and 12.7% for overall classification using the proposed ESI approach over the traditional sensor-based method. Conclusion: ESI is able to enhance BCI performance of decoding complex right-hand motor imagery tasks. Significance: This study may lead to the development of BCI systems with naturalistic and intuitive motor imaginations, thus facilitating broad use of noninvasive BCIs.
Sensorimotor-based brain-computer interfaces (BCIs) have achieved successful control of real and virtual devices in up to three dimensions; however, the traditional sensor-based paradigm limits the intuitive use of these systems. Many control signals for state-of-the-art BCIs involve imagining the movement of body parts that have little to do with the output command, revealing a cognitive disconnection between the user's intent and the action of the end effector. Therefore, there is a need to develop techniques that can identify with high spatial resolution the self-modulated neural activity reflective of the actions of a helpful output device. We extend previous EEG source imaging (ESI) work to decoding natural hand/wrist manipulations by applying a novel technique to classifying four complex motor imaginations of the right hand: flexion, extension, supination, and pronation. We report an increase of up to 18.6% for individual task classification and 12.7% for overall classification using the proposed ESI approach over the traditional sensor-based method. ESI is able to enhance BCI performance of decoding complex right-hand motor imagery tasks. This study may lead to the development of BCI systems with naturalistic and intuitive motor imaginations, thus facilitating broad use of noninvasive BCIs.
Sensorimotor-based brain-computer interfaces (BCIs) have achieved successful control of real and virtual devices in up to three dimensions; however, the traditional sensor-based paradigm limits the intuitive use of these systems. Many control signals for state-of-the-art BCIs involve imagining the movement of body parts that have little to do with the output command, revealing a cognitive disconnection between the user's intent and the action of the end effector. Therefore, there is a need to develop techniques that can identify with high spatial resolution the self-modulated neural activity reflective of the actions of a helpful output device.GOALSensorimotor-based brain-computer interfaces (BCIs) have achieved successful control of real and virtual devices in up to three dimensions; however, the traditional sensor-based paradigm limits the intuitive use of these systems. Many control signals for state-of-the-art BCIs involve imagining the movement of body parts that have little to do with the output command, revealing a cognitive disconnection between the user's intent and the action of the end effector. Therefore, there is a need to develop techniques that can identify with high spatial resolution the self-modulated neural activity reflective of the actions of a helpful output device.We extend previous EEG source imaging (ESI) work to decoding natural hand/wrist manipulations by applying a novel technique to classifying four complex motor imaginations of the right hand: flexion, extension, supination, and pronation.METHODSWe extend previous EEG source imaging (ESI) work to decoding natural hand/wrist manipulations by applying a novel technique to classifying four complex motor imaginations of the right hand: flexion, extension, supination, and pronation.We report an increase of up to 18.6% for individual task classification and 12.7% for overall classification using the proposed ESI approach over the traditional sensor-based method.RESULTSWe report an increase of up to 18.6% for individual task classification and 12.7% for overall classification using the proposed ESI approach over the traditional sensor-based method.ESI is able to enhance BCI performance of decoding complex right-hand motor imagery tasks.CONCLUSIONESI is able to enhance BCI performance of decoding complex right-hand motor imagery tasks.This study may lead to the development of BCI systems with naturalistic and intuitive motor imaginations, thus facilitating broad use of noninvasive BCIs.SIGNIFICANCEThis study may lead to the development of BCI systems with naturalistic and intuitive motor imaginations, thus facilitating broad use of noninvasive BCIs.
Author Edelman, Bradley J.
He, Bin
Baxter, Bryan
Author_xml – sequence: 1
  givenname: Bradley J.
  surname: Edelman
  fullname: Edelman, Bradley J.
  organization: Department of Biomedical Engineering, University of Minnesota
– sequence: 2
  givenname: Bryan
  surname: Baxter
  fullname: Baxter, Bryan
  organization: Department of Biomedical Engineering, University of Minnesota
– sequence: 3
  givenname: Bin
  surname: He
  fullname: He, Bin
  email: binhe@umn.edu
  organization: Department of Biomedical Engineering and the Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26276986$$D View this record in MEDLINE/PubMed
BookMark eNqNks9v0zAcxS00xLrBH4CQUCQuXFL82_EFCUrYJm1CGr1brvNN65HYJU4R--9x1m6CHdAutmx_3pOf_U7QUYgBEHpN8JwQrD8sP1_Vc4qJmFMuFSP0GZoRIaqSCkaO0AxjUpWaan6MTlK6yUtecfkCHVNJldSVnKHruj4rvsfd4KC46O3ah3VRh40NDlIxbqD4Ai42025si0Xstx38Lq79ejOW5zY0xVUc43CnhOG2WNr0I71Ez1vbJXh1mE_R8mu9XJyXl9_OLhafLksnlB5LYVcrzaSTEmyLtbOaUUE0541krWx0SyRRDW1lW1kpbB6AiVbZigFtqoadoo972-1u1UPjIIyD7cx28L0dbk203vx7EvzGrOMvwxWRldTZ4P3BYIg_d5BG0_vkoOtsgLhLhqh8I04pkU9ApdCVUvgpaA6pKWcqo-8eoTf5I0J-szuKYaqZyNTbv3M-BLz_wwyoPeCGmNIArXF-tKOPU2zfGYLN1BYztcVMbTGHtmQleaS8N_-f5s1e4wHggVdEU0kY-wPa8chJ
CODEN IEBEAX
CitedBy_id crossref_primary_10_3389_fnbot_2023_1271967
crossref_primary_10_1142_S0129065721500386
crossref_primary_10_1007_s12559_022_10077_5
crossref_primary_10_1016_j_jneumeth_2020_108740
crossref_primary_10_1109_TNSRE_2021_3132162
crossref_primary_10_1016_j_bspc_2024_106215
crossref_primary_10_1088_1741_2552_ab882e
crossref_primary_10_1109_THMS_2021_3115094
crossref_primary_10_1016_j_bspc_2022_103855
crossref_primary_10_1016_j_heliyon_2024_e30406
crossref_primary_10_3389_fnhum_2022_1032724
crossref_primary_10_1088_1741_2552_aa8ce3
crossref_primary_10_1002_hbm_26638
crossref_primary_10_1007_s10548_018_0668_1
crossref_primary_10_1371_journal_pone_0162657
crossref_primary_10_1109_ACCESS_2020_2983182
crossref_primary_10_1016_j_ultrasmedbio_2021_01_025
crossref_primary_10_1109_JBHI_2024_3452701
crossref_primary_10_1038_s41598_022_15252_0
crossref_primary_10_1115_1_4046311
crossref_primary_10_1371_journal_pone_0168766
crossref_primary_10_1016_j_jneumeth_2024_110161
crossref_primary_10_1109_RBME_2024_3449790
crossref_primary_10_1109_TBME_2018_2874167
crossref_primary_10_3390_biomimetics10030187
crossref_primary_10_1109_ACCESS_2019_2934018
crossref_primary_10_1088_1741_2560_13_5_056017
crossref_primary_10_1016_j_jneumeth_2024_110136
crossref_primary_10_1155_2017_2986423
crossref_primary_10_3389_fmech_2017_00003
crossref_primary_10_1109_TIM_2024_3500057
crossref_primary_10_3233_JIFS_202046
crossref_primary_10_1002_jdn_10166
crossref_primary_10_1088_1741_2552_ad038d
crossref_primary_10_1109_TNSRE_2022_3154369
crossref_primary_10_1109_TCDS_2022_3194603
crossref_primary_10_1007_s11571_021_09676_z
crossref_primary_10_3389_fnins_2018_00227
crossref_primary_10_1109_ACCESS_2019_2915614
crossref_primary_10_1016_j_bspc_2019_101748
crossref_primary_10_3390_s17091937
crossref_primary_10_1371_journal_pone_0188293
crossref_primary_10_3389_fnins_2021_797990
crossref_primary_10_1088_1741_2552_abd007
crossref_primary_10_1109_TAFFC_2017_2768030
crossref_primary_10_1016_j_neucom_2019_02_006
crossref_primary_10_3390_s20164629
crossref_primary_10_1371_journal_pone_0178410
crossref_primary_10_3389_fninf_2019_00047
crossref_primary_10_3389_fnins_2022_865594
crossref_primary_10_1016_j_engappai_2024_108473
crossref_primary_10_1109_TNSRE_2022_3143836
crossref_primary_10_1109_TNSRE_2022_3208710
crossref_primary_10_1126_scirobotics_aaw6844
crossref_primary_10_1155_2017_5708937
crossref_primary_10_3390_signals2030024
crossref_primary_10_1093_pnasnexus_pgae145
crossref_primary_10_1038_s41598_025_87569_5
crossref_primary_10_1371_journal_pone_0174161
crossref_primary_10_1371_journal_pone_0198786
crossref_primary_10_1109_ACCESS_2024_3371904
crossref_primary_10_3389_fnins_2017_00691
crossref_primary_10_1109_TBME_2018_2799661
crossref_primary_10_1109_TNSRE_2024_3486551
crossref_primary_10_3389_fnhum_2018_00340
crossref_primary_10_1109_TNSRE_2023_3249831
crossref_primary_10_1007_s11332_017_0379_0
crossref_primary_10_1038_s41598_024_79202_8
crossref_primary_10_1371_journal_pone_0190715
crossref_primary_10_1109_TNSRE_2019_2936987
crossref_primary_10_1109_TNSRE_2020_2981659
crossref_primary_10_1088_1741_2552_aaf12e
crossref_primary_10_3390_electronics7030038
crossref_primary_10_1016_j_neuroimage_2018_03_048
crossref_primary_10_1093_gigascience_giaa098
crossref_primary_10_1109_TBME_2018_2890291
crossref_primary_10_1038_s41598_018_26609_9
crossref_primary_10_3233_JIFS_181309
crossref_primary_10_1016_j_cmpb_2024_108425
crossref_primary_10_1088_1741_2552_abce70
crossref_primary_10_1109_JBHI_2023_3278747
crossref_primary_10_1155_2018_9354207
crossref_primary_10_1371_journal_pone_0221510
crossref_primary_10_1113_JP286639
crossref_primary_10_3390_brainsci10120965
crossref_primary_10_1007_s11571_024_10159_0
crossref_primary_10_1007_s11704_021_0587_2
crossref_primary_10_1109_TNSRE_2024_3454088
crossref_primary_10_1109_TBME_2023_3265376
crossref_primary_10_1109_TMI_2020_3025608
crossref_primary_10_3390_bioengineering10060649
crossref_primary_10_1088_1741_2552_adbec1
crossref_primary_10_1186_s12938_018_0534_0
crossref_primary_10_1109_ACCESS_2019_2940034
crossref_primary_10_1016_j_neuroimage_2021_118463
crossref_primary_10_1007_s10586_024_04818_4
crossref_primary_10_1016_j_brs_2016_07_003
crossref_primary_10_1088_1741_2552_aba7cd
crossref_primary_10_1109_TNNLS_2022_3202569
crossref_primary_10_1109_TNSRE_2023_3327907
crossref_primary_10_3390_brainsci14020114
crossref_primary_10_1016_j_patrec_2019_03_017
crossref_primary_10_3390_electronics13030565
crossref_primary_10_1109_TBME_2017_2725140
crossref_primary_10_1109_TNSRE_2021_3088637
crossref_primary_10_3233_JID_220001
crossref_primary_10_1016_j_cobme_2017_11_004
crossref_primary_10_3389_fnhum_2019_00128
crossref_primary_10_11834_jig_230031
crossref_primary_10_1109_TBME_2016_2613936
crossref_primary_10_3389_fnins_2023_1303242
crossref_primary_10_1162_neco_a_01183
crossref_primary_10_1016_j_neunet_2020_01_027
crossref_primary_10_1080_2326263X_2024_2400741
crossref_primary_10_1109_TSP_2017_2752690
crossref_primary_10_3389_fnhum_2022_830221
crossref_primary_10_1016_j_bspc_2021_103054
crossref_primary_10_1016_j_ifacol_2021_12_016
crossref_primary_10_1088_1741_2552_aa86d0
crossref_primary_10_1038_s41598_019_46310_9
crossref_primary_10_1016_j_ifacol_2021_12_019
crossref_primary_10_1186_s40708_024_00224_z
crossref_primary_10_3389_fnins_2021_642251
crossref_primary_10_1109_JBHI_2019_2922976
crossref_primary_10_1109_TNSRE_2018_2817924
crossref_primary_10_1109_MSMC_2017_2778458
crossref_primary_10_1088_1741_2552_adb994
crossref_primary_10_3390_neurosci5020012
crossref_primary_10_1016_j_neunet_2020_01_022
crossref_primary_10_15302_J_ENG_2015078
crossref_primary_10_1109_TNSRE_2018_2873061
crossref_primary_10_1371_journal_pone_0182578
crossref_primary_10_1088_1741_2552_ac1ade
crossref_primary_10_3390_brainsci13020240
crossref_primary_10_1007_s11571_024_10100_5
crossref_primary_10_1088_1741_2552_ad4914
crossref_primary_10_3390_s21175746
crossref_primary_10_34133_cbsystems_0118
crossref_primary_10_3389_fnsys_2021_578875
crossref_primary_10_1088_1741_2552_ab405f
crossref_primary_10_1088_1741_2552_ac4ed0
crossref_primary_10_1109_TNSRE_2019_2895064
crossref_primary_10_1109_TNSRE_2017_2726779
crossref_primary_10_3389_fnins_2021_658930
crossref_primary_10_1088_1741_2552_aa6baf
crossref_primary_10_1016_j_bspc_2021_103194
crossref_primary_10_32604_cmc_2024_050528
crossref_primary_10_1109_TNSRE_2023_3330500
crossref_primary_10_1016_j_jneumeth_2022_109593
crossref_primary_10_1016_j_bspc_2024_106837
crossref_primary_10_1088_1741_2552_acb386
crossref_primary_10_1155_2019_5618303
crossref_primary_10_1016_j_cmpb_2020_105722
crossref_primary_10_1109_TNSRE_2023_3323509
crossref_primary_10_1088_1741_2552_ac07bd
crossref_primary_10_1016_j_bspc_2023_105160
crossref_primary_10_1007_s10548_018_00696_3
crossref_primary_10_1007_s11517_025_03340_y
crossref_primary_10_1016_j_tibtech_2017_03_008
crossref_primary_10_1007_s00521_023_08665_z
crossref_primary_10_1093_cercor_bhaa234
crossref_primary_10_1109_THMS_2018_2830647
crossref_primary_10_1109_TBME_2016_2628958
crossref_primary_10_1016_j_compbiomed_2024_109608
crossref_primary_10_1109_TBME_2018_2863198
crossref_primary_10_1007_s11063_023_11185_5
crossref_primary_10_1038_s41598_022_08490_9
crossref_primary_10_1109_ACCESS_2018_2809453
crossref_primary_10_1371_journal_pone_0207516
crossref_primary_10_1142_S0129065719500011
crossref_primary_10_1016_j_neuroimage_2016_06_017
crossref_primary_10_1146_annurev_bioeng_062117_120853
crossref_primary_10_7717_peerj_12027
crossref_primary_10_1109_TNSRE_2019_2953121
crossref_primary_10_1038_s41597_020_0535_2
crossref_primary_10_3389_fncom_2016_00055
crossref_primary_10_1007_s11571_020_09626_1
crossref_primary_10_1007_s11571_022_09852_9
crossref_primary_10_1109_ACCESS_2019_2917327
crossref_primary_10_1109_TNSRE_2018_2877987
crossref_primary_10_1016_j_bspc_2019_01_008
crossref_primary_10_1109_ACCESS_2017_2751069
crossref_primary_10_1007_s11760_023_02965_6
crossref_primary_10_1109_TCDS_2017_2766258
crossref_primary_10_1016_j_neuroimage_2024_120802
crossref_primary_10_1088_1741_2552_abf68b
crossref_primary_10_3389_fnins_2023_1129049
crossref_primary_10_3390_brainsci13091237
crossref_primary_10_1080_27706710_2023_2285052
crossref_primary_10_1088_1742_6596_1123_1_012004
crossref_primary_10_1186_s12984_017_0307_1
crossref_primary_10_1016_j_neulet_2018_12_045
crossref_primary_10_1088_1741_2552_abc760
crossref_primary_10_1007_s00521_020_05624_w
crossref_primary_10_1016_j_neuroimage_2020_116820
crossref_primary_10_3389_fneur_2019_00126
crossref_primary_10_1016_j_bspc_2024_106081
Cites_doi 10.1109/TBME.1987.326056
10.1126/science.7792606
10.1152/jn.00239.2010
10.1109/TBME.2014.2312397
10.1109/97.566704
10.1523/JNEUROSCI.6107-09.2010
10.1126/science.8332915
10.1371/journal.pone.0026322
10.1073/pnas.0403504101
10.1016/S0140-6736(12)61816-9
10.1007/978-1-4614-5227-0_2
10.1109/TBME.2011.2139210
10.1016/0167-8760(84)90014-X
10.1016/j.medengphy.2011.11.001
10.1109/TNSRE.2005.847386
10.1109/TBME.2013.2283970
10.1109/IEMBS.2006.260128
10.1016/S1388-2457(99)00141-8
10.1109/TBME.2012.2228645
10.1016/j.clinph.2009.05.006
10.1016/j.jneumeth.2007.06.031
10.1016/S0013-4694(97)00080-1
10.1523/JNEUROSCI.5171-07.2008
10.1088/1741-2560/1/3/002
10.1109/JPROC.2015.2407272
10.1016/S0304-3940(00)01471-3
10.1093/cercor/11.4.312
10.1186/1743-0003-11-153
10.1063/1.2398883
10.1142/S233954781450023X
10.1016/j.neuroimage.2011.06.084
10.1109/10.16463
10.1088/1741-2560/10/4/046003
10.1109/TNSRE.2010.2077654
10.1109/TBME.2013.2270283
10.1097/00001756-200503150-00001
10.1109/TNSRE.2008.2003384
10.1088/1741-2560/2/4/L02
10.1155/2007/79642
10.1049/iet-spr.2008.0235
10.1109/TBME.2014.2300164
10.1109/EMBC.2014.6943840
10.1155/2011/879716
10.1016/j.neuron.2014.07.022
10.1038/nature11076
10.1016/j.neuroimage.2009.10.028
10.1016/j.clinph.2004.08.017
10.1088/1741-2560/6/6/066001
10.1109/TBME.2013.2265260
10.1007/978-1-4614-5227-0_12
10.1109/TBME.2013.2281976
10.1109/86.847808
10.1109/NER.2015.7146593
10.1097/00004728-199803000-00032
10.3389/fnins.2012.00151
10.1152/jn.90531.2008
10.1109/TBME.2013.2294203
10.1007/s11517-008-0345-8
10.1109/TBME.2000.880100
10.1016/j.neuroimage.2005.12.003
10.1002/hbm.20195
10.1088/1741-2560/4/2/002
10.1007/s00221-002-1166-x
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
DOI 10.1109/TBME.2015.2467312
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Technology Research Database
MEDLINE
Materials Research Database
Engineering Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 14
ExternalDocumentID PMC4716869
3903442531
26276986
10_1109_TBME_2015_2467312
7192613
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  grantid: R01 EB00643
  funderid: 10.13039/100000002
– fundername: National Science Foundation
  grantid: CBET-1264782; IGERT DGE-1069104
  funderid: 10.13039/100000001
– fundername: NIBIB NIH HHS
  grantid: R01 EB006433
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
ESBDL
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
ID FETCH-LOGICAL-c579t-5abb936c66eaf09ca93251944d63f6d9f1617d2f6f8a65a8a6e35f7a83e2d8d3
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Thu Aug 21 18:11:24 EDT 2025
Fri Jul 11 02:32:32 EDT 2025
Fri Jul 11 08:55:28 EDT 2025
Fri Jul 11 02:03:14 EDT 2025
Mon Jun 30 08:30:08 EDT 2025
Mon Jul 21 05:42:58 EDT 2025
Thu Apr 24 22:57:18 EDT 2025
Tue Jul 01 03:28:27 EDT 2025
Wed Aug 27 02:52:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords brain mapping
EEG source imaging (ESI)
motor imagery (MI)
Brain–computer interface (BCI)
neuroimaging
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the IEEE by sending an email to pubs-permissions@ieee.org.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c579t-5abb936c66eaf09ca93251944d63f6d9f1617d2f6f8a65a8a6e35f7a83e2d8d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/7192613
PMID 26276986
PQID 1751302935
PQPubID 85474
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4716869
proquest_miscellaneous_1765987706
ieee_primary_7192613
proquest_miscellaneous_1793242216
crossref_primary_10_1109_TBME_2015_2467312
proquest_miscellaneous_1751992437
crossref_citationtrail_10_1109_TBME_2015_2467312
pubmed_primary_26276986
proquest_journals_1751302935
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-01-01
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref53
ref52
ref11
ref54
ref10
gao (ref8) 2014; 61
ref16
ref19
ref18
schieber (ref55) 1993; 261
ref51
ref50
ref46
ref45
ref48
ref42
ref41
ref43
ref49
ref7
ref9
ref4
ref3
ref6
tikhonov (ref29) 1977; 32
ref5
ref40
ref35
ref34
ref37
ref31
ref30
ref33
ref32
müller-putz (ref44) 2008; 10
ref2
ref1
ref39
ref38
he (ref47) 2011; 58
ref24
ref23
ref26
ref25
ref64
ref20
ref63
ref22
pfurtscheller (ref17) 1999; 110
ref65
ref21
ref28
ref27
lai (ref36) 2005; 116
ref60
ref62
ref61
References_xml – ident: ref32
  doi: 10.1109/TBME.1987.326056
– ident: ref52
  doi: 10.1126/science.7792606
– ident: ref48
  doi: 10.1152/jn.00239.2010
– ident: ref11
  doi: 10.1109/TBME.2014.2312397
– ident: ref39
  doi: 10.1109/97.566704
– ident: ref64
  doi: 10.1523/JNEUROSCI.6107-09.2010
– volume: 261
  start-page: 489
  year: 1993
  ident: ref55
  article-title: How somatotopic is the motor cortex hand area?
  publication-title: Science
  doi: 10.1126/science.8332915
– ident: ref15
  doi: 10.1371/journal.pone.0026322
– ident: ref13
  doi: 10.1073/pnas.0403504101
– ident: ref2
  doi: 10.1016/S0140-6736(12)61816-9
– ident: ref1
  doi: 10.1007/978-1-4614-5227-0_2
– volume: 58
  start-page: 1918
  year: 2011
  ident: ref47
  article-title: Electrophysiological imaging of brain activity and connectivity-challenges and opportunities
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2011.2139210
– ident: ref30
  doi: 10.1016/0167-8760(84)90014-X
– ident: ref59
  doi: 10.1016/j.medengphy.2011.11.001
– ident: ref25
  doi: 10.1109/TNSRE.2005.847386
– ident: ref49
  doi: 10.1109/TBME.2013.2283970
– ident: ref27
  doi: 10.1109/IEMBS.2006.260128
– volume: 110
  start-page: 1842
  year: 1999
  ident: ref17
  article-title: Event-related EEG/MEG synchronization and desynchronization: Basic principles
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(99)00141-8
– ident: ref5
  doi: 10.1109/TBME.2012.2228645
– ident: ref61
  doi: 10.1016/j.clinph.2009.05.006
– ident: ref28
  doi: 10.1016/j.jneumeth.2007.06.031
– ident: ref41
  doi: 10.1016/S0013-4694(97)00080-1
– ident: ref63
  doi: 10.1523/JNEUROSCI.5171-07.2008
– ident: ref24
  doi: 10.1088/1741-2560/1/3/002
– ident: ref12
  doi: 10.1109/JPROC.2015.2407272
– ident: ref46
  doi: 10.1016/S0304-3940(00)01471-3
– ident: ref54
  doi: 10.1093/cercor/11.4.312
– ident: ref60
  doi: 10.1186/1743-0003-11-153
– ident: ref35
  doi: 10.1063/1.2398883
– ident: ref18
  doi: 10.1142/S233954781450023X
– ident: ref51
  doi: 10.1016/j.neuroimage.2011.06.084
– ident: ref33
  doi: 10.1109/10.16463
– ident: ref16
  doi: 10.1088/1741-2560/10/4/046003
– ident: ref14
  doi: 10.1109/TNSRE.2010.2077654
– ident: ref6
  doi: 10.1109/TBME.2013.2270283
– ident: ref56
  doi: 10.1097/00001756-200503150-00001
– ident: ref22
  doi: 10.1109/TNSRE.2008.2003384
– ident: ref21
  doi: 10.1088/1741-2560/2/4/L02
– ident: ref45
  doi: 10.1155/2007/79642
– ident: ref62
  doi: 10.1049/iet-spr.2008.0235
– volume: 61
  start-page: 1436
  year: 2014
  ident: ref8
  article-title: Visual and auditory brain-computer interfaces
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2014.2300164
– ident: ref43
  doi: 10.1109/EMBC.2014.6943840
– ident: ref42
  doi: 10.1155/2011/879716
– ident: ref65
  doi: 10.1016/j.neuron.2014.07.022
– ident: ref3
  doi: 10.1038/nature11076
– ident: ref23
  doi: 10.1016/j.neuroimage.2009.10.028
– volume: 116
  start-page: 456
  year: 2005
  ident: ref36
  article-title: Estimation of in vivo human brain-to-skull conductivity ratio from simultaneous extra- and intra-cranial electrical potential recordings
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2004.08.017
– ident: ref50
  doi: 10.1088/1741-2560/6/6/066001
– ident: ref7
  doi: 10.1109/TBME.2013.2265260
– ident: ref19
  doi: 10.1007/978-1-4614-5227-0_12
– ident: ref9
  doi: 10.1109/TBME.2013.2281976
– volume: 32
  start-page: 1320
  year: 1977
  ident: ref29
  article-title: Solutions of ill-posed problems
  publication-title: Am Math Soc
– volume: 10
  start-page: 52
  year: 2008
  ident: ref44
  article-title: Better than random? A closer look on BCI results
  publication-title: Int J Bioelectromagn
– ident: ref4
  doi: 10.1109/86.847808
– ident: ref38
  doi: 10.1109/NER.2015.7146593
– ident: ref31
  doi: 10.1097/00004728-199803000-00032
– ident: ref20
  doi: 10.3389/fnins.2012.00151
– ident: ref53
  doi: 10.1152/jn.90531.2008
– ident: ref10
  doi: 10.1109/TBME.2013.2294203
– ident: ref58
  doi: 10.1007/s11517-008-0345-8
– ident: ref34
  doi: 10.1109/TBME.2000.880100
– ident: ref40
  doi: 10.1016/j.neuroimage.2005.12.003
– ident: ref37
  doi: 10.1002/hbm.20195
– ident: ref26
  doi: 10.1088/1741-2560/4/2/002
– ident: ref57
  doi: 10.1007/s00221-002-1166-x
SSID ssj0014846
Score 2.607147
Snippet Goal: Sensorimotor-based brain-computer interfaces (BCIs) have achieved successful control of real and virtual devices in up to three dimensions; however, the...
Sensorimotor-based brain-computer interfaces (BCIs) have achieved successful control of real and virtual devices in up to three dimensions; however, the...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4
SubjectTerms Adolescent
Adult
Brain mapping
Brain Mapping - methods
Brain-computer interface
Brain-Computer Interfaces
Classification
Decoding
Devices
Disengaging
EEG source imaging
Electrodes
Electroencephalography
Electroencephalography - methods
Female
Hand - physiology
Humans
Imagination - physiology
Imaging
Integrated circuits
Male
Motor imagery
Motors
Neuroimaging
Robot sensing systems
Scalp
Surfaces
Tasks
Three dimensional
Time-frequency analysis
Young Adult
Title EEG Source Imaging Enhances the Decoding of Complex Right-Hand Motor Imagery Tasks
URI https://ieeexplore.ieee.org/document/7192613
https://www.ncbi.nlm.nih.gov/pubmed/26276986
https://www.proquest.com/docview/1751302935
https://www.proquest.com/docview/1751992437
https://www.proquest.com/docview/1765987706
https://www.proquest.com/docview/1793242216
https://pubmed.ncbi.nlm.nih.gov/PMC4716869
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VHhAcWmh5pBRkJE6IbBPHduIjj5QFKRzKIvUWOX6oqCWpursS9NfX42SjbVWtuFiRMpHszNj-xuP5BuAdzVPWKE5jzXzDqHGxpE7Ghhep1UigJjDBufohpr_Y91N-ugUfxlwYa224fGYn-Bhi-abTSzwqO8o9HBFYovaBd9z6XK0xYsCKPiknSf0EppINEcw0kUezT1WJl7j4hPplIUuxgg0VNBcSM6jXtqNQX-U-qHn3xuTaFnS8C9Wq8_3Nk_PJctFM9PUdXsf_Hd0T2BmwKPnYG89T2LLtHjxeYyjcg4fVEHvfh5Oy_Ep-hrN-8u1PKG5EyvYMrWZOPIwkX7wnizsh6RzBZebC_iUngadkqlpDqs679-FLe_WPzNT8fP4MZsfl7PM0HioyxJrnchFz1TQyE1oIq1witfLoz0NAxozInDDSobdkqBOuUIIr39iMu1wVmaWmMNlz2G671r4EklhnBHdKOY_IPIgs0rxhqW5UoTPmpIwgWeml1gNbORbNuKiD15LIGrVao1brQasRvB8_ueypOjYJ76MGRsHh50dwuFJ-PUzmee0RFoZ3ZcYjeDu-9tMQYyuqtd2yl5ES2R03yQguizxPxCYZiRCXpl7mRW9zYx9XNhtBfssaRwGkCr_9pv19FijDPQQRhZAH94_6FTzy_2Y4WTqE7cXV0r72WGvRvAmT7AZf2CJ-
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5VReJx4NFSGihgJE6IbBPHduIjj5QtND2UIPUWOX6oqCWpursS8OvxJNloW1UrLlakjCXbM7Y_ezzfALylacxqxWmomS8YNS6U1MnQ8Cy2GgnUBAY4F8di-oN9PeWnG_B-jIWx1naPz-wEPztfvmn1Aq_K9lMPRwSmqL3j930e99Fao8-AZX1YThT7KUwlG3yYcST3y49Fjs-4-IT6hSGJMYcNFTQVEmOoVzakLsPKbWDz5pvJlU3o4BEUy-b3b0_OJ4t5PdF_bzA7_m__HsPDAY2SD735PIEN22zBgxWOwi24Wwze9204yfMv5Ht3208Of3XpjUjenKHdzIgHkuSzP8viXkhaR3ChubC_yUnHVDJVjSFF6w_4XU179YeUanY-ewrlQV5-moZDToZQ81TOQ67qWiZCC2GVi6RWHv95EMiYEYkTRjo8LxnqhMuU4MoXNuEuVVliqclMsgObTdvYXSCRdUZwp5TzmMzDyCxOaxbrWmU6YU7KAKKlXio98JVj2oyLqju3RLJCrVao1WrQagDvxiqXPVnHOuFt1MAoOAx-AHtL5VfDdJ5VHmOhg1cmPIA3428_EdG7ohrbLnoZKZHfcZ2M4DJL00isk5EIcmnsZZ71Nje2cWmzAaTXrHEUQLLw63-an2cdabgHISIT8vntvX4N96ZlcVQdHR5_ewH3_TgN90x7sDm_WtiXHnnN61fdhPsHoUIlxw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEG+Source+Imaging+Enhances+the+Decoding+of+Complex+Right-Hand+Motor+Imagery+Tasks&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Edelman%2C+Bradley+J&rft.au=Baxter%2C+Bryan&rft.au=He%2C+Bin&rft.date=2016-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=63&rft.issue=1&rft.spage=4&rft_id=info:doi/10.1109%2FTBME.2015.2467312&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3903442531
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon