EEG Source Imaging Enhances the Decoding of Complex Right-Hand Motor Imagery Tasks
Goal: Sensorimotor-based brain-computer interfaces (BCIs) have achieved successful control of real and virtual devices in up to three dimensions; however, the traditional sensor-based paradigm limits the intuitive use of these systems. Many control signals for state-of-the-art BCIs involve imagining...
Saved in:
Published in | IEEE transactions on biomedical engineering Vol. 63; no. 1; pp. 4 - 14 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Goal: Sensorimotor-based brain-computer interfaces (BCIs) have achieved successful control of real and virtual devices in up to three dimensions; however, the traditional sensor-based paradigm limits the intuitive use of these systems. Many control signals for state-of-the-art BCIs involve imagining the movement of body parts that have little to do with the output command, revealing a cognitive disconnection between the user's intent and the action of the end effector. Therefore, there is a need to develop techniques that can identify with high spatial resolution the self-modulated neural activity reflective of the actions of a helpful output device. Methods: We extend previous EEG source imaging (ESI) work to decoding natural hand/wrist manipulations by applying a novel technique to classifying four complex motor imaginations of the right hand: flexion, extension, supination, and pronation. Results: We report an increase of up to 18.6% for individual task classification and 12.7% for overall classification using the proposed ESI approach over the traditional sensor-based method. Conclusion: ESI is able to enhance BCI performance of decoding complex right-hand motor imagery tasks. Significance: This study may lead to the development of BCI systems with naturalistic and intuitive motor imaginations, thus facilitating broad use of noninvasive BCIs. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0018-9294 1558-2531 1558-2531 |
DOI: | 10.1109/TBME.2015.2467312 |