SenseHunger: Machine Learning Approach to Hunger Detection Using Wearable Sensors

The perception of hunger and satiety is of great importance to maintaining a healthy body weight and avoiding chronic diseases such as obesity, underweight, or deficiency syndromes due to malnutrition. There are a number of disease patterns, characterized by a chronic loss of this perception. To our...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 20; p. 7711
Main Authors Irshad, Muhammad Tausif, Nisar, Muhammad Adeel, Huang, Xinyu, Hartz, Jana, Flak, Olaf, Li, Frédéric, Gouverneur, Philip, Piet, Artur, Oltmanns, Kerstin M., Grzegorzek, Marcin
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The perception of hunger and satiety is of great importance to maintaining a healthy body weight and avoiding chronic diseases such as obesity, underweight, or deficiency syndromes due to malnutrition. There are a number of disease patterns, characterized by a chronic loss of this perception. To our best knowledge, hunger and satiety cannot be classified using non-invasive measurements. Aiming to develop an objective classification system, this paper presents a multimodal sensory system using associated signal processing and pattern recognition methods for hunger and satiety detection based on non-invasive monitoring. We used an Empatica E4 smartwatch, a RespiBan wearable device, and JINS MEME smart glasses to capture physiological signals from five healthy normal weight subjects inactively sitting on a chair in a state of hunger and satiety. After pre-processing the signals, we compared different feature extraction approaches, either based on manual feature engineering or deep feature learning. Comparative experiments were carried out to determine the most appropriate sensor channel, device, and classifier to reliably discriminate between hunger and satiety states. Our experiments showed that the most discriminative features come from three specific sensor modalities: Electrodermal Activity (EDA), infrared Thermopile (Tmp), and Blood Volume Pulse (BVP).
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s22207711