Structure of the N Intermediate of Bacteriorhodopsin Revealed by X-Ray Diffraction
X-ray diffraction experiments revealed the structure of the N photointermediate of bacteriorhodopsin. Since the retinal Schiff base is reprotonated from Asp-96 during the M to N transition in the photocycle, and Asp-96 is reprotonated during the lifetime of the N intermediate, or immediately after,...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 93; no. 4; pp. 1386 - 1390 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences of the United States of America
20.02.1996
National Acad Sciences National Academy of Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | X-ray diffraction experiments revealed the structure of the N photointermediate of bacteriorhodopsin. Since the retinal Schiff base is reprotonated from Asp-96 during the M to N transition in the photocycle, and Asp-96 is reprotonated during the lifetime of the N intermediate, or immediately after, N is a key intermediate for understanding the light-driven proton pump. The N intermediate accumulates in large amounts during continuous illumination of the F171C mutant at pH 7 and 5 degrees C. Small but significant changes of the structure were detected in the x-ray diffraction profile under these conditions. The changes were reversible and reproducible. The difference Fourier map indicates that the major change occurs near helix F. The observed diffraction changes between N and the original state were essentially identical to the diffraction changes reported for the M intermediate of the D96N mutant of bacteriorhodopsin. Thus, we find that the protein conformations of the M and N intermediates of the photocyte are essentially the same, in spite of the fact that in M the Schiff base is unprotonated and in N it is protonated. The observed structural change near helix F will increase access of the Schiff base and Asp-96 to the cytoplasmic surface and facilitate the proton transfer events that begin with the decay of the M state. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.93.4.1386 |