Impairing cardiac oxygen supply in swimming coho salmon compromises their heart function and tolerance to acute warming
Climatic warming elevates mortality for many salmonid populations during their physically challenging up-river spawning migrations, yet, the mechanisms underlying the increased mortality remain elusive. One hypothesis posits that a cardiac oxygen insufficiency impairs the heart’s capacity to pump su...
Saved in:
Published in | Scientific reports Vol. 13; no. 1; pp. 21204 - 16 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.12.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Climatic warming elevates mortality for many salmonid populations during their physically challenging up-river spawning migrations, yet, the mechanisms underlying the increased mortality remain elusive. One hypothesis posits that a cardiac oxygen insufficiency impairs the heart’s capacity to pump sufficient oxygen to body tissues to sustain up-river swimming, especially in warm water when oxygen availability declines and cardiac and whole-animal oxygen demand increases. We tested this hypothesis by measuring cardiac and metabolic (cardiorespiratory) performance, and assessing the upper thermal tolerance of coho salmon (
Oncorhynchus kisutch
) during sustained swimming and acute warming. By surgically ligating the coronary artery, which naturally accumulates arteriosclerotic lesions in migrating salmon, we partially impaired oxygen supply to the heart. Coronary ligation caused drastic cardiac impairment during swimming, even at benign temperatures, and substantially constrained cardiorespiratory performance during swimming and progressive warming compared to sham-operated control fish. Furthermore, upper thermal tolerance during swimming was markedly reduced (by 4.4 °C) following ligation. While the cardiorespiratory capacity of female salmon was generally lower at higher temperatures compared to males, upper thermal tolerance during swimming was similar between sexes within treatment groups. Cardiac oxygen supply is a crucial determinant for the migratory capacity of salmon facing climatic environmental warming. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-023-47713-5 |