ERα Signaling in a Subset of CXCL12‐Abundant Reticular Cells Regulates Trabecular Bone in Mice

ABSTRACT Estrogen has pronounced effects on the immune system, which also influences bone homeostasis. In recent years, stromal cells in lymphoid organs have gained increasing attention as they not only support the regulation of immune responses but also affect bone remodeling. A conditional knockou...

Full description

Saved in:
Bibliographic Details
Published inJBMR plus Vol. 6; no. 8; pp. e10657 - n/a
Main Authors Scheffler, Julia M, Gustafsson, Karin L, Barrett, Aidan, Corciulo, Carmen, Drevinge, Christina, Del Carpio Pons, Alicia M, Humeniuk, Piotr, Engdahl, Cecilia, Gustafsson, Jan‐Åke, Ohlsson, Claes, Carlsten, Hans, Lagerquist, Marie K., Islander, Ulrika
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.08.2022
Oxford University Press
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:ABSTRACT Estrogen has pronounced effects on the immune system, which also influences bone homeostasis. In recent years, stromal cells in lymphoid organs have gained increasing attention as they not only support the regulation of immune responses but also affect bone remodeling. A conditional knockout mouse model where estrogen receptor alpha (ERα) is deleted in CCL19‐expressing stromal cells (Ccl19‐Cre ERαfl/fl mice) was generated and bone densitometry was performed to analyze the importance of stromal cell–specific ERα signaling on the skeleton. Results showed that female Ccl19‐Cre ERαfl/fl mice display reduced total bone mineral density and detailed X‐ray analyses revealed that ERα expression in CCL19‐expressing stromal cells is important for trabecular but not cortical bone homeostasis. Further analysis showed that the trabecular bone loss is caused by increased osteoclastogenesis. Additionally, the bone formation rate was reduced; however, the expression of osteoprogenitor genes was not altered. Analysis of the bone marrow stromal cell compartment revealed a deletion of ERα in a subgroup of CXCL12‐abundant reticular (CAR) cells resulting in increased secretion of the pro‐osteoclastogenic chemokine CXCL12. In conclusion, this study reveals the importance of ERα signaling in CAR cells for bone health. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research. Deletion of ERα in CCL19‐expressing stromal cells affects a subpopulation of bone marrow CXCL12‐abundant reticular (CAR) cells. Female Ccl19‐Cre ERαfl/fl mice suffer from: ① increased secretion of CXCL12; ② increased osteoclastogenesis; ③ loss of trabecular bone. Created with BioRender.com.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2473-4039
2473-4039
DOI:10.1002/jbm4.10657