Evaluation of waist-mounted tri-axial accelerometer based fall-detection algorithms during scripted and continuous unscripted activities

Abstract It is estimated that by 2050 more than one in five people will be aged 65 or over. In this age group, falls are one of the most serious life-threatening events that can occur. Their automatic detection would help reduce the time of arrival of medical attention, thus reducing the mortality r...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomechanics Vol. 43; no. 15; pp. 3051 - 3057
Main Authors Bourke, A.K, van de Ven, P, Gamble, M, O’Connor, R, Murphy, K, Bogan, E, McQuade, E, Finucane, P, ÓLaighin, G, Nelson, J
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 16.11.2010
Elsevier
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract It is estimated that by 2050 more than one in five people will be aged 65 or over. In this age group, falls are one of the most serious life-threatening events that can occur. Their automatic detection would help reduce the time of arrival of medical attention, thus reducing the mortality rate and in turn promoting independent living. This study evaluated a variety of existing and novel fall-detection algorithms for a waist-mounted accelerometer based system. In total, 21 algorithms of varying degrees of complexity were tested against a comprehensive data-set recorded from 10 young healthy volunteers performing 240 falls and 120 activities of daily living (ADL) and 10 elderly healthy volunteers performing 240 scripted ADL and 52.4 waking hours of continuous unscripted normal ADL. Results show that using an algorithm that employs thresholds in velocity, impact and posture (velocity+impact+posture) achieves 100% specificity and sensitivity with a false-positive rate of less than 1 false-positive (0.6 false-positives) per day of waking hours. This algorithm is the most suitable method of fall-detection, when tested using continuous unscripted activities performed by elderly healthy volunteers, which is the target environment for a fall-detection device.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0021-9290
1873-2380
DOI:10.1016/j.jbiomech.2010.07.005