Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes
The large polymer particle residue generated during the transfer process of graphene grown by chemical vapour deposition is a critical issue that limits its use in large-area thin-film devices such as organic light-emitting diodes. The available lighting areas of the graphene-based organic light-emi...
Saved in:
Published in | Nature communications Vol. 8; no. 1; p. 14560 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
24.02.2017
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The large polymer particle residue generated during the transfer process of graphene grown by chemical vapour deposition is a critical issue that limits its use in large-area thin-film devices such as organic light-emitting diodes. The available lighting areas of the graphene-based organic light-emitting diodes reported so far are usually <1 cm
2
. Here we report a transfer method using rosin as a support layer, whose weak interaction with graphene, good solubility and sufficient strength enable ultraclean and damage-free transfer. The transferred graphene has a low surface roughness with an occasional maximum residue height of about 15 nm and a uniform sheet resistance of 560 Ω per square with about 1% deviation over a large area. Such clean, damage-free graphene has produced the four-inch monolithic flexible graphene-based organic light-emitting diode with a high brightness of about 10,000 cd m
−2
that can already satisfy the requirements for lighting sources and displays.
Ultraclean and damage-free transfer of graphene over large areas is crucial for the future development of flexible electronics and optoelectronics. Using a rosin-assisted method, the authors transfer graphene with an ultraclean surface and uniform small sheet resistance—a 4-inch monolithic organic light-emitting diode is demonstrated. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/ncomms14560 |