Radiative cooling to deep sub-freezing temperatures through a 24-h day–night cycle

Radiative cooling technology utilizes the atmospheric transparency window (8–13 μm) to passively dissipate heat from Earth into outer space (3 K). This technology has attracted broad interests from both fundamental sciences and real world applications, ranging from passive building cooling, renewabl...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 7; no. 1; pp. 13729 - 5
Main Authors Chen, Zhen, Zhu, Linxiao, Raman, Aaswath, Fan, Shanhui
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 13.12.2016
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Radiative cooling technology utilizes the atmospheric transparency window (8–13 μm) to passively dissipate heat from Earth into outer space (3 K). This technology has attracted broad interests from both fundamental sciences and real world applications, ranging from passive building cooling, renewable energy harvesting and passive refrigeration in arid regions. However, the temperature reduction experimentally demonstrated, thus far, has been relatively modest. Here we theoretically show that ultra-large temperature reduction for as much as 60 °C from ambient is achievable by using a selective thermal emitter and by eliminating parasitic thermal load, and experimentally demonstrate a temperature reduction that far exceeds previous works. In a populous area at sea level, we have achieved an average temperature reduction of 37 °C from the ambient air temperature through a 24-h day–night cycle, with a maximal reduction of 42 °C that occurs when the experimental set-up enclosing the emitter is exposed to peak solar irradiance. Radiative cooling relies on the atmosphere’s transparency window. Here the authors achieve up to 42 °C drops in temperature for low thermal loads under diffuse sunlight by improving the selectivity of the emissivity and the thermal management of their devices.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms13729