Amazonian chemical weathering rate derived from stony meteorite finds at Meridiani Planum on Mars

Spacecraft exploring Mars such as the Mars Exploration Rovers Spirit and Opportunity, as well as the Mars Science Laboratory or Curiosity rover, have accumulated evidence for wet and habitable conditions on early Mars more than 3 billion years ago. Current conditions, by contrast, are cold, extremel...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 7; no. 1; p. 13459
Main Authors Schröder, Christian, Bland, Phil A., Golombek, Matthew P., Ashley, James W., Warner, Nicholas H., Grant, John A.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 11.11.2016
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Spacecraft exploring Mars such as the Mars Exploration Rovers Spirit and Opportunity, as well as the Mars Science Laboratory or Curiosity rover, have accumulated evidence for wet and habitable conditions on early Mars more than 3 billion years ago. Current conditions, by contrast, are cold, extremely arid and seemingly inhospitable. To evaluate exactly how dry today’s environment is, it is important to understand the ongoing current weathering processes. Here we present chemical weathering rates determined for Mars. We use the oxidation of iron in stony meteorites investigated by the Mars Exploration Rover Opportunity at Meridiani Planum. Their maximum exposure age is constrained by the formation of Victoria crater and their minimum age by erosion of the meteorites. The chemical weathering rates thus derived are ∼1 to 4 orders of magnitude slower than that of similar meteorites found in Antarctica where the slowest rates are observed on Earth. Little is known about the impacts of Mars’ contemporary dryness on weathering processes. Here, using iron oxidation estimates from the Mars Rover Opportunity, the authors quantify chemical weathering rates for Mars, finding appreciably slower rates compared with the lowest values on Earth.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms13459