3D Culturing and differentiation of SH-SY5Y neuroblastoma cells on bacterial nanocellulose scaffolds

Abstract A new in vitro model, mimicking the complexity of nerve tissue, was developed based on a bacterial nanocellulose (BNC) scaffold that supports 3D culturing of neuronal cells. BNC is extracellularly excreted by Gluconacetobacter xylinus (G. xylinus) in the shape of long non-aggregated nanofib...

Full description

Saved in:
Bibliographic Details
Published inArtificial cells, nanomedicine, and biotechnology Vol. 42; no. 5; pp. 302 - 308
Main Authors Innala, Marcus, Riebe, Ilse, Kuzmenko, Volodymyr, Sundberg, Johan, Gatenholm, Paul, Hanse, Eric, Johannesson, Sara
Format Journal Article
LanguageEnglish
Published England Informa Healthcare 01.10.2014
Taylor & Francis
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract A new in vitro model, mimicking the complexity of nerve tissue, was developed based on a bacterial nanocellulose (BNC) scaffold that supports 3D culturing of neuronal cells. BNC is extracellularly excreted by Gluconacetobacter xylinus (G. xylinus) in the shape of long non-aggregated nanofibrils. The cellulose network created by G. xylinus has good mechanical properties, 99% water content, and the ability to be shaped into 3D structures by culturing in different molds. Surface modification with trimethyl ammonium beta-hydroxypropyl (TMAHP) to induce a positive surface charge, followed by collagen I coating, has been used to improve cell adhesion, growth, and differentiation on the scaffold. In the present study, we used SH-SY5Y neuroblastoma cells as a neuronal model. These cells attached and proliferated well on the BNC scaffold, as demonstrated by scanning electron microscopy (SEM) and the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (MTS) assay. Following neuronal differentiation, we demonstrated functional action potentials (APs) by electrophysiological recordings, indicating the presence of mature neurons on the scaffolds. In conclusion, we have demonstrated for the first time that neurons can attach, proliferate, and differentiate on BNC. This 3D model based on BNC scaffolds could possibly be used for developing in vitro disease models, when combined with human induced pluripotent stem (iPS) cells (derived from diseased patients) for detailed investigations of neurodegenerative disease mechanisms and in the search for new therapeutics.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2169-1401
2169-141X
2169-141X
DOI:10.3109/21691401.2013.821410