Synthesis, characterization and catalytic testing of MCM-22 derived catalysts for n-hexane cracking

Layered zeolites and their delaminated structures are novel materials that enhance the catalytic performance of catalysts by addressing diffusion limitations of the reactant molecules. n-Hexane catalytic cracking was observed over MCM-22 layered zeolite and its derivative structures over the tempera...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 10; no. 1; p. 21786
Main Authors Ahmad, Ali, Naqvi, Salman Raza, Rafique, Muhammad, Nasir, Habib, Sarosh, Ali
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 11.12.2020
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Layered zeolites and their delaminated structures are novel materials that enhance the catalytic performance of catalysts by addressing diffusion limitations of the reactant molecules. n-Hexane catalytic cracking was observed over MCM-22 layered zeolite and its derivative structures over the temperature range of 450–650 °C for the production of olefins. MCM-22, H-MCM-22, and ITQ-2 zeolites were prepared by the hydrothermal method. Oxalic acid was used as a dealuminating reagent to obtain H-MCM-22 with various Si/Al ratios ranging from 09–65. The prepared samples were characterized by XRD, SEM, TGA, and BET. The cracking of n-hexane was carried out by Pyro/GC–MS. It was observed that the selectivity for olefins was improved by increasing the Si/Al ratio. H-MCM-22–10% produced the highest relative olefinic concentration of 68% as compared to other dealuminated structures. Moreover, the product distribution showed that higher reaction temperature is favorable to produce more olefins. Furthermore, a comparison between ITQ-2 and MCM-22 derived structures showed that ITQ-2 is more favorable for olefins production at high temperatures. The concentration of relative olefins was increased up to 80% over ITQ-2 at 650 °C.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-020-78746-9