The UDP-glucose pyrophosphorylase from Giardia lamblia is redox regulated and exhibits promiscuity to use galactose-1-phosphate

Giardia lamblia is a pathogen of humans and other vertebrates. The synthesis of glycogen and of structural oligo and polysaccharides critically determine the parasite's capacity for survival and pathogenicity. These characteristics establish that UDP-glucose is a relevant metabolite, as it is a...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta Vol. 1850; no. 1; pp. 88 - 96
Main Authors Ebrecht, Ana C., Asención Diez, Matías D., Piattoni, Claudia V., Guerrero, Sergio A., Iglesias, Alberto A.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.01.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Giardia lamblia is a pathogen of humans and other vertebrates. The synthesis of glycogen and of structural oligo and polysaccharides critically determine the parasite's capacity for survival and pathogenicity. These characteristics establish that UDP-glucose is a relevant metabolite, as it is a main substrate to initiate varied carbohydrate metabolic routes. Herein, we report the molecular cloning of the gene encoding UDP-glucose pyrophosphorylase from genomic DNA of G. lamblia, followed by its heterologous expression in Escherichia coli. The purified recombinant enzyme was characterized to have a monomeric structure. Glucose-1-phosphate and UTP were preferred substrates, but the enzyme also used galactose-1-phosphate and TTP. The catalytic efficiency to synthesize UDP-galactose was significant. Oxidation by physiological compounds (hydrogen peroxide and nitric oxide) inactivated the enzyme and the process was reverted after reduction by cysteine and thioredoxin. UDP-N-acetyl-glucosamine pyrophosphorylase, the other UTP-related enzyme in the parasite, neither used galactose-1-phosphate nor was affected by redox modification. Our results suggest that in G. lamblia the UDP-glucose pyrophosphorylase is regulated by oxido-reduction mechanism. The enzyme exhibits the ability to synthesize UDP-glucose and UDP-galactose and it plays a key role providing substrates to glycosyl transferases that produce oligo and polysaccharides. The characterization of the G. lamblia UDP-glucose pyrophosphorylase reinforces the view that in protozoa this enzyme is regulated by a redox mechanism. As well, we propose a new pathway for UDP-galactose production mediated by the promiscuous UDP-glucose pyrophosphorylase of this organism. •Giardia lamblia UDP-glucose pyrophosphorylase (recombinant) was characterized.•The enzyme activity was affected by redox compounds of physiological relevance.•The enzyme exhibited similar catalytic efficiency for glucose-1P and galactose-1P.•UDP-glucose pyrophosphorylase would be redox regulated.•The UDP-galactose produced by the enzyme would serve to the parasite metabolism.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0304-4165
0006-3002
1872-8006
DOI:10.1016/j.bbagen.2014.10.002