Fuzzy support vector machine for classification of EEG signals using wavelet-based features

Translation of electroencephalographic (EEG) recordings into control signals for brain–computer interface (BCI) systems needs to be based on a robust classification of the various types of information. EEG-based BCI features are often noisy and likely to contain outliers. This contribution describes...

Full description

Saved in:
Bibliographic Details
Published inMedical engineering & physics Vol. 31; no. 7; pp. 858 - 865
Main Authors Xu, Qi, Zhou, Hui, Wang, Yongji, Huang, Jian
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.09.2009
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Translation of electroencephalographic (EEG) recordings into control signals for brain–computer interface (BCI) systems needs to be based on a robust classification of the various types of information. EEG-based BCI features are often noisy and likely to contain outliers. This contribution describes the application of a fuzzy support vector machine (FSVM) with a radial basis function kernel for classifying motor imagery tasks, while the statistical features over the set of the wavelet coefficients were extracted to characterize the time–frequency distribution of EEG signals. In the proposed FSVM classifier, a low fraction of support vectors was used as a criterion for choosing the kernel parameter and the trade-off parameter, together with the membership parameter based solely on training data. FSVM and support vector machine (SVM) classifiers outperformed the winner of the BCI Competition 2003 and other similar studies on the same Graz dataset, in terms of the competition criterion of the mutual information (MI), while the FSVM classifier yielded a better performance than the SVM approach. FSVM and SVM classifiers perform much better than the winner of the BCI Competition 2005 on the same Graz dataset for the subject O3 according to the competition criterion of the maximal MI steepness, while the FSVM classifier outperforms the SVM method. The proposed FSVM model has potential in reducing the effects of noise or outliers in the online classification of EEG signals in BCIs.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:1350-4533
1873-4030
1873-4030
DOI:10.1016/j.medengphy.2009.04.005