Citrate synthase from Synechocystis is a distinct class of bacterial citrate synthase

Citrate synthase (CS, EC 2.3.3.1) catalyses the initial reaction of the tricarboxylic acid (TCA) cycle. Although CSs from heterotrophic bacteria have been extensively studied, cyanobacterial CSs are not well-understood. Cyanobacteria can produce various metabolites from carbon dioxide. Synechocystis...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 9; no. 1; p. 6038
Main Authors Ito, Shoki, Koyama, Naoto, Osanai, Takashi
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 15.04.2019
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Citrate synthase (CS, EC 2.3.3.1) catalyses the initial reaction of the tricarboxylic acid (TCA) cycle. Although CSs from heterotrophic bacteria have been extensively studied, cyanobacterial CSs are not well-understood. Cyanobacteria can produce various metabolites from carbon dioxide. Synechocystis sp. PCC 6803 ( Synechocystis 6803) is a cyanobacterium used to synthesize metabolites through metabolic engineering techniques. The production of acetyl-CoA-derived metabolites in Synechocystis 6803 has been widely examined. However, the biochemical mechanisms of reactions involving acetyl-CoA in Synechocystis 6803 are poorly understood. We characterised the CS from Synechocystis 6803 ( Sy CS) and compared its characteristics with other bacterial CSs. Sy CS catalysed only the generation of citrate, and did not catalyse the cleavage of citrate. It is suggested that Sy CS is not related to the reductive TCA cycle. The substrate affinity and turnover number of Sy CS were lower than those of CSs from heterotrophic bacteria. Sy CS was activated by MgCl 2 and CaCl 2 , which inhibit various bacterial CSs. Sy CS was not inhibited by ATP and NADH; which are typical feedback inhibitors of other bacterial CSs. Sy CS was inhibited by phosphoenolpyruvate and activated by ADP, which has not been reported for CSs from heterotrophic bacteria. Thus, Sy CS showed unique characteristics, particularly its sensitivity to effectors.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-019-42659-z