3D Finite element analysis of functionally graded multilayered dental ceramic cores

This study aimed at investigating and establishing stress distributions in graded multilayered zirconia/alumina ceramic cores and at veneer-core-cement-dentin interfaces, using finite element analysis (FEA), to facilitate the structural design of ceramic cores through computer modeling. An intact ma...

Full description

Saved in:
Bibliographic Details
Published inDental Materials Journal Vol. 33; no. 4; pp. 458 - 465
Main Authors Al-MAQTARI, Ali Abdullah, RAZAK, Abdul Aziz Abdul, HAMDI, Mohd
Format Journal Article
LanguageEnglish
Japanese
Published Japan The Japanese Society for Dental Materials and Devices 2014
Japanese Society for Dental Materials and Devices
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study aimed at investigating and establishing stress distributions in graded multilayered zirconia/alumina ceramic cores and at veneer-core-cement-dentin interfaces, using finite element analysis (FEA), to facilitate the structural design of ceramic cores through computer modeling. An intact maxillary premolar was digitized using CT scanning. An imaging software, Mimics, was used to reconstruct 3D models based on computed tomography (CT) data saved in DICOM format. Eight different 3D models were created for FEA, where each 3D model was meshed and its bottom boundaries constrained. A static load was applied in the oblique direction. The materials were assumed to be isotropic and homogeneous. Highest von Mises stress values were found in areas directly below the load application point, and stress gradually decreased in occlusal loading direction from the external surface toward the dentin. Stress levels occurring at veneer-ceramic core-cement-dentin interfaces were shown to be lower in multilayered ceramic cores than in single-layer models.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0287-4547
1881-1361
DOI:10.4012/dmj.2013-251