Biofilms on glacial surfaces: hotspots for biological activity

Glaciers are important constituents in the Earth’s hydrological and carbon cycles, with predicted warming leading to increases in glacial melt and the transport of nutrients to adjacent and downstream aquatic ecosystems. Microbial activity on glacial surfaces has been linked to the biological darken...

Full description

Saved in:
Bibliographic Details
Published inNPJ biofilms and microbiomes Vol. 2; no. 1; p. 16008
Main Authors Smith, Heidi J, Schmit, Amber, Foster, Rachel, Littman, Sten, Kuypers, Marcel MM, Foreman, Christine M
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 08.06.2016
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Glaciers are important constituents in the Earth’s hydrological and carbon cycles, with predicted warming leading to increases in glacial melt and the transport of nutrients to adjacent and downstream aquatic ecosystems. Microbial activity on glacial surfaces has been linked to the biological darkening of cryoconite particles, affecting albedo and increased melt. This phenomenon, however, has only been demonstrated for alpine glaciers and the Greenland Ice Sheet, excluding Antarctica. In this study, we show via confocal laser scanning microscopy that microbial communities on glacial surfaces in Antarctica persist in biofilms. Overall, ~35% of the cryoconite sediment surfaces were covered by biofilm. Nanoscale scale secondary ion mass spectrometry measured significant enrichment of 13 C and 15 N above background in both Bacteroidetes and filamentous cyanobacteria (i.e., Oscillatoria ) when incubated in the presence of 13 C–NaHCO 3 and 15 NH 4 . This transfer of newly synthesised organic compounds was dependent on the distance of heterotrophic Bacteroidetes from filamentous Oscillatoria . We conclude that the spatial organisation within these biofilms promotes efficient transfer and cycling of nutrients. Further, these results support the hypothesis that biofilm formation leads to the accumulation of organic matter on cryoconite minerals, which could influence the surface albedo of glaciers.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
H.J.S., C.M.F., R.F. designed the research. H.J.S., A.S., S.L. and C.M.F. performed the research H.J.S., C.M.F., R.A.F. analysed the data. H.J.S., C.M.F., R.A.F., S.L., M.M.M.K. wrote the paper.
ISSN:2055-5008
2055-5008
DOI:10.1038/npjbiofilms.2016.8