Promotion effects of microwave heating on coalbed methane desorption compared with conductive heating
As a clean energy resource, coalbed methane (CBM) has drawn worldwide attention. However, the CBM reservoir has strong adsorption capacity and low permeability and thus requires stimulation. As a means to stimulate coalbed methane recovery, thermal injection faces geological and economic challenges...
Saved in:
Published in | Scientific reports Vol. 11; no. 1; pp. 9618 - 16 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
05.05.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As a clean energy resource, coalbed methane (CBM) has drawn worldwide attention. However, the CBM reservoir has strong adsorption capacity and low permeability and thus requires stimulation. As a means to stimulate coalbed methane recovery, thermal injection faces geological and economic challenges because it uses conventional conductive heating (CH) to transfer heat. Realized by the conversion of the electromagnetic energy into the thermal energy, microwave heating (MH) may be a sound stimulation method. Although previous research suggested that MH had potential as a stimulation method for coalbed methane recovery, it is not clear if MH is superior to CH for enhancing coalbed methane recovery. This paper compares the effect of MH and CH on methane desorption from coal using purpose-built experimental equipment. To compare the MH and CH experimental results, the desorption temperature for each CH desorption test was set to the maximum temperature reached in the correlative MH desorption test. The results show that although the cumulative desorbed volume (CDV) of methane under MH was less than that desorbed by CH in the initial desorption stage, the final total CDV under MH for the three different power settings was ~ 12% to ~ 21% more than that desorbed by CH at the same temperatures. CH and MH both change the sample’s microstructure but MH enlarges the pores, decreases methane adsorption, promotes methane diffusion, and improves permeability more effectively than CH. Rapid temperature rise and the changes in the coal’s microstructure caused by MH were the main reasons for its superior performance. These findings may provide reference for selecting the most appropriate type of heating for thermal injection assisted coalbed methane recovery. |
---|---|
AbstractList | As a clean energy resource, coalbed methane (CBM) has drawn worldwide attention. However, the CBM reservoir has strong adsorption capacity and low permeability and thus requires stimulation. As a means to stimulate coalbed methane recovery, thermal injection faces geological and economic challenges because it uses conventional conductive heating (CH) to transfer heat. Realized by the conversion of the electromagnetic energy into the thermal energy, microwave heating (MH) may be a sound stimulation method. Although previous research suggested that MH had potential as a stimulation method for coalbed methane recovery, it is not clear if MH is superior to CH for enhancing coalbed methane recovery. This paper compares the effect of MH and CH on methane desorption from coal using purpose-built experimental equipment. To compare the MH and CH experimental results, the desorption temperature for each CH desorption test was set to the maximum temperature reached in the correlative MH desorption test. The results show that although the cumulative desorbed volume (CDV) of methane under MH was less than that desorbed by CH in the initial desorption stage, the final total CDV under MH for the three different power settings was ~ 12% to ~ 21% more than that desorbed by CH at the same temperatures. CH and MH both change the sample's microstructure but MH enlarges the pores, decreases methane adsorption, promotes methane diffusion, and improves permeability more effectively than CH. Rapid temperature rise and the changes in the coal's microstructure caused by MH were the main reasons for its superior performance. These findings may provide reference for selecting the most appropriate type of heating for thermal injection assisted coalbed methane recovery.As a clean energy resource, coalbed methane (CBM) has drawn worldwide attention. However, the CBM reservoir has strong adsorption capacity and low permeability and thus requires stimulation. As a means to stimulate coalbed methane recovery, thermal injection faces geological and economic challenges because it uses conventional conductive heating (CH) to transfer heat. Realized by the conversion of the electromagnetic energy into the thermal energy, microwave heating (MH) may be a sound stimulation method. Although previous research suggested that MH had potential as a stimulation method for coalbed methane recovery, it is not clear if MH is superior to CH for enhancing coalbed methane recovery. This paper compares the effect of MH and CH on methane desorption from coal using purpose-built experimental equipment. To compare the MH and CH experimental results, the desorption temperature for each CH desorption test was set to the maximum temperature reached in the correlative MH desorption test. The results show that although the cumulative desorbed volume (CDV) of methane under MH was less than that desorbed by CH in the initial desorption stage, the final total CDV under MH for the three different power settings was ~ 12% to ~ 21% more than that desorbed by CH at the same temperatures. CH and MH both change the sample's microstructure but MH enlarges the pores, decreases methane adsorption, promotes methane diffusion, and improves permeability more effectively than CH. Rapid temperature rise and the changes in the coal's microstructure caused by MH were the main reasons for its superior performance. These findings may provide reference for selecting the most appropriate type of heating for thermal injection assisted coalbed methane recovery. As a clean energy resource, coalbed methane (CBM) has drawn worldwide attention. However, the CBM reservoir has strong adsorption capacity and low permeability and thus requires stimulation. As a means to stimulate coalbed methane recovery, thermal injection faces geological and economic challenges because it uses conventional conductive heating (CH) to transfer heat. Realized by the conversion of the electromagnetic energy into the thermal energy, microwave heating (MH) may be a sound stimulation method. Although previous research suggested that MH had potential as a stimulation method for coalbed methane recovery, it is not clear if MH is superior to CH for enhancing coalbed methane recovery. This paper compares the effect of MH and CH on methane desorption from coal using purpose-built experimental equipment. To compare the MH and CH experimental results, the desorption temperature for each CH desorption test was set to the maximum temperature reached in the correlative MH desorption test. The results show that although the cumulative desorbed volume (CDV) of methane under MH was less than that desorbed by CH in the initial desorption stage, the final total CDV under MH for the three different power settings was ~ 12% to ~ 21% more than that desorbed by CH at the same temperatures. CH and MH both change the sample’s microstructure but MH enlarges the pores, decreases methane adsorption, promotes methane diffusion, and improves permeability more effectively than CH. Rapid temperature rise and the changes in the coal’s microstructure caused by MH were the main reasons for its superior performance. These findings may provide reference for selecting the most appropriate type of heating for thermal injection assisted coalbed methane recovery. Abstract As a clean energy resource, coalbed methane (CBM) has drawn worldwide attention. However, the CBM reservoir has strong adsorption capacity and low permeability and thus requires stimulation. As a means to stimulate coalbed methane recovery, thermal injection faces geological and economic challenges because it uses conventional conductive heating (CH) to transfer heat. Realized by the conversion of the electromagnetic energy into the thermal energy, microwave heating (MH) may be a sound stimulation method. Although previous research suggested that MH had potential as a stimulation method for coalbed methane recovery, it is not clear if MH is superior to CH for enhancing coalbed methane recovery. This paper compares the effect of MH and CH on methane desorption from coal using purpose-built experimental equipment. To compare the MH and CH experimental results, the desorption temperature for each CH desorption test was set to the maximum temperature reached in the correlative MH desorption test. The results show that although the cumulative desorbed volume (CDV) of methane under MH was less than that desorbed by CH in the initial desorption stage, the final total CDV under MH for the three different power settings was ~ 12% to ~ 21% more than that desorbed by CH at the same temperatures. CH and MH both change the sample’s microstructure but MH enlarges the pores, decreases methane adsorption, promotes methane diffusion, and improves permeability more effectively than CH. Rapid temperature rise and the changes in the coal’s microstructure caused by MH were the main reasons for its superior performance. These findings may provide reference for selecting the most appropriate type of heating for thermal injection assisted coalbed methane recovery. |
ArticleNumber | 9618 |
Author | Wang, Zhijun Wang, Xiaojuan |
Author_xml | – sequence: 1 givenname: Zhijun surname: Wang fullname: Wang, Zhijun email: wzj0537@163.com organization: State Key Laboratory Cultivation Base for Gas Geology and Gas Control (Henan Polytechnic University), School of Safety Science and Engineering, Henan Polytechnic University, Collaborative Innovation Center of Central Plains Economic Region for Coalbed /Shale Gas, Henan Province – sequence: 2 givenname: Xiaojuan surname: Wang fullname: Wang, Xiaojuan organization: State Key Laboratory Cultivation Base for Gas Geology and Gas Control (Henan Polytechnic University), School of Safety Science and Engineering, Henan Polytechnic University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33953313$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uktv1DAQtlARfdA_wAFF4sIlYHviJL4goQpKpUpwgLPltSe7XiX2Yjut-u9xNy19HOqLH99Dn2fmmBz44JGQd4x-YhT6z6lhQvY15azuJZNQi1fkiNNG1Bw4P3h0PiSnKW1pWYLLhsk35BBACgAGRwR_xTCF7IKvcBjQ5FSFoZqcieFaX2G1QZ2dX1cFN0GPK7TVhHmjPVYWU4i7vdSEaadjwa5d3pSbt7PJ7kH-lrwe9Jjw9G4_IX--f_t99qO-_Hl-cfb1sjai63Itm0bQobFWt50xIKnlbd9LzjrAVSOY7VbaGmlBlH9RCkOBZNdSQTVKOrRwQi4WXxv0Vu2im3S8UUE7tX8Ica10zM6MqJBy1FxSo4E3veW6GwABjTQ9pYbx4vVl8drNqwmtQZ-jHp-YPkW826h1uFI9K9FoUww-3hnE8HfGlNXkksFxLMULc1JccN5yKgEK9cMz6jbM0ZdS7Vkc2o71hfX-caL_Ue67WQj9QijdSynioIzL-rZDJaAbFaPqdnbUMjuqzI7az44SRcqfSe_dXxTBIkqF7NcYH2K_oPoHfgDWiw |
CitedBy_id | crossref_primary_10_1016_j_ijrmms_2024_105785 crossref_primary_10_1016_j_fuel_2021_121613 crossref_primary_10_1016_j_measurement_2024_115278 crossref_primary_10_1021_acsomega_1c05562 crossref_primary_10_1021_acsomega_1c04056 crossref_primary_10_1016_j_energy_2024_130797 crossref_primary_10_1016_j_ijhydene_2022_04_217 crossref_primary_10_3390_app14010174 crossref_primary_10_1021_acsomega_2c06425 |
Cites_doi | 10.1021/acs.energyfuels.6b01720 10.1016/j.jngse.2020.103313 10.1016/j.fuel.2015.11.038 10.1021/acs.energyfuels.7b01260 10.1016/j.ijmst.2016.05.013 10.1016/j.fuel.2018.02.125 10.1260/0144-5987.32.4.601 10.1016/j.petrol.2015.02.020 10.1016/j.petrol.2013.02.014 10.1016/j.fuel.2020.119618 10.1016/S0166-5162(01)00051-9 10.1016/j.ijmst.2017.05.014 10.1016/j.fuel.2007.02.005 10.1016/j.coal.2011.07.007 10.1016/j.coal.2012.05.011 10.1016/j.jclepro.2019.118239 10.1016/j.fuel.2015.01.019 10.1016/j.fuel.2014.04.084 10.1016/j.apenergy.2015.04.031 10.1016/j.fuel.2020.118506 10.1016/j.fuproc.2019.03.002 10.1016/j.jngse.2015.05.035 10.1080/15567036.2011.578112 10.1016/j.joei.2016.10.005 10.1016/j.fuel.2020.119043 10.1016/j.fuel.2012.07.023 10.1021/ef300598e 10.1016/j.hydromet.2003.10.006 10.1190/1.1443264 10.1016/j.ijhydene.2019.08.248 10.1016/j.powtec.2012.09.010 10.1088/0022-3727/34/13/201 10.1021/ie102490v 10.1016/j.fuel.2018.04.066 10.1016/0016-2361(96)00142-1 10.1016/j.jechem.2020.01.008 10.1016/j.fuel.2013.04.084 10.2118/94-02-05 10.1016/j.jiec.2014.03.014 10.1021/es505953c 10.1016/j.petrol.2017.01.055 10.1016/j.applthermaleng.2011.10.049 10.1007/s00603-020-02230-z 10.2118/1537-G-PA 10.1016/j.coal.2014.06.011 10.1016/j.jaap.2020.104897 10.1016/j.jappgeo.2017.12.011 10.1016/j.energy.2020.118444 10.1016/j.cherd.2013.06.013 10.1016/j.coal.2007.05.001 10.1016/j.molliq.2020.113494 10.1016/j.supflu.2008.08.013 10.1016/j.jcou.2020.101193 10.1002/ceat.201900339 10.1016/j.jngse.2014.12.022 10.1016/j.fuel.2004.09.019 10.1016/j.fuproc.2018.04.034 10.1016/S0166-5162(02)00135-0 10.1016/j.applthermaleng.2016.01.009 10.1016/j.jngse.2016.07.074 10.1016/j.coal.2008.09.011 10.1016/j.enconman.2013.03.021 10.1021/acs.energyfuels.0c02294 10.2172/1054498 10.2118/62550-MS |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-021-89193-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection PML(ProQuest Medical Library) Science Database (ProQuest) Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 16 |
ExternalDocumentID | oai_doaj_org_article_e02ea290ca3248d2a7f3e3ec9c800c12 PMC8100304 33953313 10_1038_s41598_021_89193_5 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 51404101 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Key Scientific Research Project of Colleges and Universities in Henan Province grantid: 20A440001 funderid: http://dx.doi.org/10.13039/501100013066 – fundername: Key Scientific Research Project of Colleges and Universities in Henan Province grantid: 20A440001 – fundername: National Natural Science Foundation of China grantid: 51404101 – fundername: ; grantid: 20A440001 – fundername: ; grantid: 51404101 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT NPM 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c577t-94450f4dda67cc390d268892173eb451d7badc9d35232003f921976050ae90f63 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:31:02 EDT 2025 Thu Aug 21 18:07:34 EDT 2025 Thu Jul 10 22:48:51 EDT 2025 Wed Aug 13 04:53:54 EDT 2025 Thu Apr 03 06:55:09 EDT 2025 Thu Apr 24 23:12:25 EDT 2025 Tue Jul 01 03:48:22 EDT 2025 Fri Feb 21 02:39:04 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c577t-94450f4dda67cc390d268892173eb451d7badc9d35232003f921976050ae90f63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-021-89193-5 |
PMID | 33953313 |
PQID | 2522236718 |
PQPubID | 2041939 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e02ea290ca3248d2a7f3e3ec9c800c12 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8100304 proquest_miscellaneous_2522620933 proquest_journals_2522236718 pubmed_primary_33953313 crossref_citationtrail_10_1038_s41598_021_89193_5 crossref_primary_10_1038_s41598_021_89193_5 springer_journals_10_1038_s41598_021_89193_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-05 |
PublicationDateYYYYMMDD | 2021-05-05 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Hassan, Sher, Zarren, Suleiman, Tahir, Snape (CR8) 2020; 78 Gao, Lin, Yang, Li, Pang, Li (CR19) 2015; 26 Cai, Pan, Liu, Zheng, Tang, Connell, Yao, Zhou (CR36) 2014; 32 Ranganayaki, Akturk, Fryer (CR42) 1992; 57 Zhang, Ranjith, Perera, Ranathunga, Haque (CR25) 2016; 30 Wang, Rezaee, Saeedi, Josh (CR61) 2017; 152 Sehar, Sher, Zhang, Khalid, Sulejmanović, Lima (CR1) 2020; 313 Zhang, Ran, Jin, Zhang, Zhou, Sher (CR7) 2019; 17 Zhao, Zhao, Feng, Liu, Liu (CR34) 2011; 34 Moore (CR11) 2012; 101 Guo, Kang, Kang, Chai, Zhao (CR23) 2014; 131 Chen, Tang (CR74) 2001; 26 Bykov, Rybakov, Semenov (CR73) 2001; 34 Hong, Lin, Nie, Zhu, Wang, Li (CR64) 2018; 227 Senthamaraikkannan, Gates, Prasad (CR12) 2016; 167 Hu, Yang, Xu, Xu (CR66) 2018; 150 Sher, Yaqoob, Saeed, Zhang, Jahan, Klemeš (CR71) 2020; 209 Tahmasebi, Yu, Han, Zhao, Bhattacharya (CR55) 2014; 92 Fayaz, Shariaty, Atkinson, Hashisho, Phillips, Anderson, Nichols (CR53) 2015; 49 Yao, Liu, Tang, Tang, Che, Huang (CR14) 2009; 78 Li, Shi, Lin, Lu, Lu, Ye, Wang, Hong, Zhu (CR62) 2019; 189 Al-Shara, Sher, Yaqoob, Chen (CR2) 2019; 44 Wang, Xin, Tu, Wang (CR60) 2018; 91 Li, Yao, Xin, Li, Guan, Liu (CR22) 2021; 35 Tang, Li, Ripepi, Louk, Wang, Song (CR35) 2015; 22 Mao, Zhou, Hashisho, Wang, Chen, Wang (CR52) 2015; 21 Tyulenev, Litvin, Zhironkin, Gasanov (CR20) 2019; 24 Law, Liew, Chang, Chan, Leo (CR27) 2016; 98 Wei, Wen, Deng, Ma, Li, Lei, Fan, Liu (CR21) 2021; 284 He, Wang, Li, Liu, Zhang (CR79) 2010; 29 Osman, Abu-Dahrieh, McLaren, Laffir, Rooney (CR10) 2018; 3 CR45 Razavi, Kharrat (CR41) 2009; 16 Ge, Zhang, Wang, Zhou, Cen (CR50) 2013; 71 Zhang, Liu (CR76) 1993; 2 Li, Tian, Huang, Lu, Shi, Lu, Huang, Liu, Zhu (CR65) 2020; 53 Scott (CR13) 2002; 50 Mozaffari, Nikookar, Ehsani, Sahranavard, Roayaie, Mohammadi (CR29) 2013; 112 Teng, Wang, Gao, Ju (CR40) 2016; 34 Farag, Sobhy, Akyel, Doucet, Chaouki (CR49) 2012; 36 Mazzotti, Pini, Storti (CR17) 2009; 47 Willman, Valleroy, Runberg, Cornelius, Powers (CR26) 1961; 13 Liu, Guo, An, Lin, La (CR46) 2016; 26 Yin, Qiu, Zhang, Sher, Zhang, Xu, Wen (CR78) 2020; 150 Yang, Ren, Zhang, Guo (CR32) 2013; 38 Sakurovs, Day, Weir, Duffy (CR33) 2008; 73 Jiang, Yang, Xian, Xiong, Jun (CR38) 2010; 35 Salmachi, Haghighi (CR39) 2012; 26 Gürdal, Yalçın (CR68) 2001; 48 Alexeev, Feldman, Vasilenko (CR16) 2007; 86 Zhang, Fang, Jin, Zhang, Zhou, Sher (CR6) 2019; 17 Bientinesi, Petarca, Cerutti, Bandinelli, Simoni, Manotti, Maddinelli (CR48) 2013; 107 Kumar, Lester, Kingman, Bourne, Avila, Jones, Robinson, Halleck, Mathews (CR58) 2011; 88 Pang, Liu, Zhu (CR28) 2015; 128 Hai, Sher, Zarren, Liu (CR4) 2019; 240 Huang, Xu, Hu, Kizil, Chen (CR63) 2018; 177 Al-Shara, Sher, Iqbal, Sajid, Chen (CR3) 2020; 49 Zhang, Wu, Mao, Zhang, Yao (CR30) 2012; 29 Bera, Babadagli (CR47) 2015; 151 Pan, Hou, Ju, Bai, Zhao (CR77) 2012; 102 Pi, Sun, Gao, Zhu, Wang, Qu, Liu, Zhao (CR54) 2017; 31 Cherbański, Komorowska-Durka, Stefanidis, Stankiewicz (CR51) 2011; 50 Al-Juboori, Sher, Hazafa, Khan, Chen (CR5) 2020; 40 CR24 Butler (CR43) 1994; 33 Zhang (CR75) 2005; 36 Al-Harahsheh, Kingman (CR72) 2004; 73 Cai, Liu, Yao, Li, Pan (CR37) 2014; 132 Wang, Ma, Wei, Li (CR69) 2018; 222 Xia, Yang, Liang (CR56) 2013; 233 Yang, Zhang (CR31) 2011; 40 Butler, Mokrys (CR44) 1989; 5 Zhang, Zhang, Guo (CR15) 2017; 27 Cao, Yildirim, Durucan, Wolf, Cai, Agrawal, Korre (CR18) 2021; 288 Clarkson, Bustin (CR67) 1996; 75 Sher, Iqbal, Albazzaz, Ali, Mortari, Rashid (CR70) 2020; 282 Liu, Zhu, Cheng, Zhou, Cen (CR59) 2015; 146 Osman (CR9) 2020; 43 Lester, Kingman, Dodds (CR57) 2005; 84 W Cao (89193_CR18) 2021; 288 B Willman (89193_CR26) 1961; 13 AI Osman (89193_CR9) 2020; 43 Y Cai (89193_CR36) 2014; 32 F Sher (89193_CR71) 2020; 209 P Chen (89193_CR74) 2001; 26 L Ge (89193_CR50) 2013; 71 R Butler (89193_CR44) 1989; 5 R Sakurovs (89193_CR33) 2008; 73 R Cherbański (89193_CR51) 2011; 50 Y Yao (89193_CR14) 2009; 78 C Yin (89193_CR78) 2020; 150 M Mazzotti (89193_CR17) 2009; 47 T Teng (89193_CR40) 2016; 34 G Gürdal (89193_CR68) 2001; 48 A Alexeev (89193_CR16) 2007; 86 G Hu (89193_CR66) 2018; 150 X Tang (89193_CR35) 2015; 22 R Butler (89193_CR43) 1994; 33 Z Wang (89193_CR69) 2018; 222 H Li (89193_CR62) 2019; 189 C Li (89193_CR22) 2021; 35 L Zhang (89193_CR15) 2017; 27 X Yang (89193_CR31) 2011; 40 A Salmachi (89193_CR39) 2012; 26 M Al-Harahsheh (89193_CR72) 2004; 73 G Senthamaraikkannan (89193_CR12) 2016; 167 IU Hai (89193_CR4) 2019; 240 F Zhang (89193_CR30) 2012; 29 W Xia (89193_CR56) 2013; 233 AI Osman (89193_CR10) 2018; 3 89193_CR24 G Wei (89193_CR21) 2021; 284 S Razavi (89193_CR41) 2009; 16 Y Hong (89193_CR64) 2018; 227 Y Zhang (89193_CR6) 2019; 17 YuV Bykov (89193_CR73) 2001; 34 Y Cai (89193_CR37) 2014; 132 Q Liu (89193_CR46) 2016; 26 F Sher (89193_CR70) 2020; 282 E Lester (89193_CR57) 2005; 84 M Law (89193_CR27) 2016; 98 H Kumar (89193_CR58) 2011; 88 A Bera (89193_CR47) 2015; 151 W Wang (89193_CR60) 2018; 91 H Li (89193_CR65) 2020; 53 S Sehar (89193_CR1) 2020; 313 Y Zhang (89193_CR7) 2019; 17 Y Gao (89193_CR19) 2015; 26 J Guo (89193_CR23) 2014; 131 R Ranganayaki (89193_CR42) 1992; 57 Y Jiang (89193_CR38) 2010; 35 J Liu (89193_CR59) 2015; 146 M He (89193_CR79) 2010; 29 J Huang (89193_CR63) 2018; 177 M Tyulenev (89193_CR20) 2019; 24 X Yang (89193_CR32) 2013; 38 S Farag (89193_CR49) 2012; 36 A Tahmasebi (89193_CR55) 2014; 92 H Zhang (89193_CR76) 1993; 2 S Mozaffari (89193_CR29) 2013; 112 89193_CR45 H Wang (89193_CR61) 2017; 152 M Fayaz (89193_CR53) 2015; 49 C Clarkson (89193_CR67) 1996; 75 NK Al-Shara (89193_CR2) 2019; 44 O Al-Juboori (89193_CR5) 2020; 40 MHA Hassan (89193_CR8) 2020; 78 J Pan (89193_CR77) 2012; 102 D Zhao (89193_CR34) 2011; 34 T Moore (89193_CR11) 2012; 101 Z Pang (89193_CR28) 2015; 128 X Zhang (89193_CR75) 2005; 36 X Zhang (89193_CR25) 2016; 30 X Pi (89193_CR54) 2017; 31 NK Al-Shara (89193_CR3) 2020; 49 A Scott (89193_CR13) 2002; 50 M Bientinesi (89193_CR48) 2013; 107 H Mao (89193_CR52) 2015; 21 |
References_xml | – volume: 30 start-page: 8832 year: 2016 end-page: 8849 ident: CR25 article-title: Gas transportation and enhanced coalbed methane recovery processes in deep coal seams: A review publication-title: Energ. Fuel doi: 10.1021/acs.energyfuels.6b01720 – ident: CR45 – volume: 78 start-page: 103313 year: 2020 ident: CR8 article-title: Kinetic and thermodynamic evaluation of effective combined promoters for CO hydrate formation publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2020.103313 – volume: 167 start-page: 188 year: 2016 end-page: 198 ident: CR12 article-title: Development of a multiscale microbial kinetics coupled gas transport model for the simulation of biogenic coalbed methane production publication-title: Fuel doi: 10.1016/j.fuel.2015.11.038 – volume: 2 start-page: 23 year: 1993 end-page: 26 ident: CR76 article-title: Analysis on adsorption loop and pore structure of coal publication-title: Coal Eng. – volume: 17 start-page: 2018 year: 2019 end-page: 2110 ident: CR6 article-title: Effect of slot wall jet on combustion process in a 660 MW opposed wall fired pulverized coal boiler publication-title: Int. J. Chem. React. Eng. – volume: 40 start-page: 89 year: 2011 end-page: 94 ident: CR31 article-title: Numerical simulation on flow rules of coal-bed methane by thermal stimulation publication-title: J. China Univ. Min. Technol. – volume: 31 start-page: 9693 year: 2017 end-page: 9702 ident: CR54 article-title: Microwave irradiation induced high-efficiency regeneration for desulfurized activated coke: A comparative study with conventional thermal regeneration publication-title: Energy Fuel doi: 10.1021/acs.energyfuels.7b01260 – volume: 26 start-page: 615 year: 2016 end-page: 621 ident: CR46 article-title: Water blocking effect caused by the use of hydraulic methods for permeability enhancement in coal seams and methods for its removal publication-title: Int. J. Min. Sci. Technol. doi: 10.1016/j.ijmst.2016.05.013 – volume: 29 start-page: 505 year: 2012 end-page: 510 ident: CR30 article-title: Coupled thermal-hydrological-mechanical analysis of exploiting coal methane by heat injection publication-title: J. Min. Saf. Eng. – volume: 26 start-page: 552 year: 2001 end-page: 556 ident: CR74 article-title: The research on the adsorption of nitrogen in low temperature and micro-pore properties in coal publication-title: J. China Coal Soc. – volume: 222 start-page: 56 year: 2018 end-page: 63 ident: CR69 article-title: Microwave irradiation’s effect on promoting coalbed methane desorption and analysis of desorption kinetics publication-title: Fuel doi: 10.1016/j.fuel.2018.02.125 – volume: 35 start-page: 434 year: 2010 end-page: 438 ident: CR38 article-title: The infiltration equation of coal bed under the cooperation of stress field, temperature field and sound field publication-title: J. China Coal Soc. – volume: 32 start-page: 601 year: 2014 end-page: 619 ident: CR36 article-title: Effects of pressure and temperature on gas diffusion and flow for primary and enhanced coalbed methane recovery publication-title: Energ. Explor. Exploit. doi: 10.1260/0144-5987.32.4.601 – volume: 128 start-page: 184 year: 2015 end-page: 193 ident: CR28 article-title: A laboratory study of enhancing heavy oil recovery with steam flooding by adding nitrogen foams publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2015.02.020 – volume: 107 start-page: 18 year: 2013 end-page: 30 ident: CR48 article-title: A radiofrequency/microwave heating method for thermal heavy oil recovery based on a novel tight-shell conceptual design publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2013.02.014 – volume: 288 start-page: 119618 year: 2021 ident: CR18 article-title: Fracture behaviour and seismic response of naturally fractured coal subjected to true triaxial stresses and hydraulic fracturing publication-title: Fuel doi: 10.1016/j.fuel.2020.119618 – volume: 48 start-page: 133 year: 2001 end-page: 144 ident: CR68 article-title: Pore volume and surface area of the Carboniferous coals from the Zonguldak basin (NW Turkey) and their variations with rank and maceral composition publication-title: Int. J. Coal Geol. doi: 10.1016/S0166-5162(01)00051-9 – volume: 27 start-page: 687 year: 2017 end-page: 692 ident: CR15 article-title: A case study of gas drainage to low permeability coal seam publication-title: Int. J. Mining Sci. Technol. doi: 10.1016/j.ijmst.2017.05.014 – volume: 86 start-page: 2574 year: 2007 end-page: 2580 ident: CR16 article-title: Methane desorption from a coal-bed publication-title: Fuel doi: 10.1016/j.fuel.2007.02.005 – volume: 88 start-page: 75 year: 2011 end-page: 82 ident: CR58 article-title: Inducing fractures and increasing cleat apertures in a bituminous coal under isotropic stress via application of microwave energy publication-title: Int. J. Coal Geol. doi: 10.1016/j.coal.2011.07.007 – volume: 101 start-page: 36 year: 2012 end-page: 81 ident: CR11 article-title: Coalbed methane: A review publication-title: Int. J. Coal Geol. doi: 10.1016/j.coal.2012.05.011 – volume: 16 start-page: 125 year: 2009 end-page: 139 ident: CR41 article-title: Application of cyclic steam stimulation by horizontal wells in iranian heavy oil reservoirs publication-title: Sci. Iran. – volume: 240 start-page: 118239 year: 2019 ident: CR4 article-title: Experimental investigation of tar arresting techniques and their evaluation for product syngas cleaning from bubbling fluidized bed gasifier publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.118239 – volume: 146 start-page: 41 year: 2015 end-page: 50 ident: CR59 article-title: Pore structure and fractal analysis of Ximeng lignite under microwave irradiation publication-title: Fuel doi: 10.1016/j.fuel.2015.01.019 – volume: 132 start-page: 12 year: 2014 end-page: 19 ident: CR37 article-title: Partial coal pyrolysis and its implication to enhance coalbed methane recovery. Part I: An experimental investigation publication-title: Fuel doi: 10.1016/j.fuel.2014.04.084 – volume: 151 start-page: 206 year: 2015 end-page: 226 ident: CR47 article-title: Status of electromagnetic heating for enhanced heavy oil/bitumen recovery and future prospects: A review publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.04.031 – volume: 282 start-page: 118506 year: 2020 ident: CR70 article-title: Development of biomass derived highly porous fast adsorbents for post-combustion CO capture publication-title: Fuel doi: 10.1016/j.fuel.2020.118506 – volume: 24 start-page: 88 year: 2019 end-page: 97 ident: CR20 article-title: The influence of parameters of drilling and blasting operations on the performance of hydraulic backhoes at coal open pits in Kuzbass publication-title: Acta Montan. Slovaca – volume: 189 start-page: 49 year: 2019 end-page: 61 ident: CR62 article-title: A fully coupled electromagnetic, heat transfer and multiphase porous media model for microwave heating of coal publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2019.03.002 – volume: 26 start-page: 193 year: 2015 end-page: 204 ident: CR19 article-title: Drilling large diameter cross-measure boreholes to improve gas drainage in highly gassy soft coal seams publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2015.05.035 – volume: 34 start-page: 324 year: 2011 end-page: 331 ident: CR34 article-title: Experiments of methane adsorption on raw coal at 30–270 °C publication-title: Energy Source A. doi: 10.1080/15567036.2011.578112 – volume: 91 start-page: 75 year: 2018 end-page: 86 ident: CR60 article-title: Pore structure development in Xilingol lignite under microwave irradiation publication-title: J. Energy Inst. doi: 10.1016/j.joei.2016.10.005 – volume: 284 start-page: 119043 year: 2021 ident: CR21 article-title: Liquid CO injection to enhance coalbed methane recovery: An experiment and in-situ application test publication-title: Fuel doi: 10.1016/j.fuel.2020.119043 – volume: 102 start-page: 760 year: 2012 end-page: 765 ident: CR77 article-title: Coalbed methane sorption related to coal deformation structures at different temperatures and pressures publication-title: Fuel doi: 10.1016/j.fuel.2012.07.023 – volume: 26 start-page: 5048 year: 2012 end-page: 5059 ident: CR39 article-title: Feasibility study of thermally enhanced gas recovery of coal seam gas reservoirs using geothermal resources publication-title: Energy Fuel doi: 10.1021/ef300598e – volume: 73 start-page: 189 year: 2004 end-page: 203 ident: CR72 article-title: Microwave-assisted leaching-a review publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2003.10.006 – volume: 57 start-page: 488 year: 1992 end-page: 494 ident: CR42 article-title: Formation resistivity variation due to steam flooding: A log study publication-title: Geophysics doi: 10.1190/1.1443264 – volume: 44 start-page: 27224 year: 2019 end-page: 27236 ident: CR2 article-title: Electrochemical investigation of novel reference electrode Ni/Ni(OH) in comparison with silver and platinum inert quasi-reference electrodes for electrolysis in eutectic molten hydroxide publication-title: Int. J. Hydrogen Energ. doi: 10.1016/j.ijhydene.2019.08.248 – volume: 3 start-page: 1545 year: 2018 end-page: 1550 ident: CR10 article-title: Characterisation of robust combustion catalyst from aluminium foil waste publication-title: Chem. Select – volume: 233 start-page: 186 year: 2013 end-page: 189 ident: CR56 article-title: Effect of microwave pretreatment on oxidized coal flotation publication-title: Powder Technol. doi: 10.1016/j.powtec.2012.09.010 – volume: 34 start-page: 55 year: 2001 end-page: 75 ident: CR73 article-title: High-temperature microwave processing of materials publication-title: J. Phys. D. doi: 10.1088/0022-3727/34/13/201 – volume: 50 start-page: 8632 year: 2011 end-page: 8644 ident: CR51 article-title: Microwave swing regeneration vs temperature swing regeneration—comparison of desorption kinetics publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie102490v – volume: 227 start-page: 434 year: 2018 end-page: 447 ident: CR64 article-title: Microwave irradiation on pore morphology of coal powder publication-title: Fuel doi: 10.1016/j.fuel.2018.04.066 – volume: 75 start-page: 1483 year: 1996 end-page: 1498 ident: CR67 article-title: Variation in micropore capacity and size distribution with composition in bituminous coal of the Western Canadian Sedimentary Basin: Implications for coalbed methane potential publication-title: Fuel doi: 10.1016/0016-2361(96)00142-1 – volume: 49 start-page: 33 year: 2020 end-page: 41 ident: CR3 article-title: Electrochemical study of different membrane materials for the fabrication of stable, reproducible and reusable reference electrode publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.01.008 – volume: 17 start-page: 2019 year: 2019 end-page: 2064 ident: CR7 article-title: Simulation of particle mixing and separation in multi-component fluidized bed using Eulerian-Eulerian method: A review publication-title: Int. J. Chem. React. Eng. – volume: 112 start-page: 185 year: 2013 end-page: 192 ident: CR29 article-title: Numerical modeling of steam injection in heavy oil reservoirs publication-title: Fuel doi: 10.1016/j.fuel.2013.04.084 – volume: 33 start-page: 44 year: 1994 end-page: 50 ident: CR43 article-title: Steam-assisted gravity drainage: Concept, development, performance and future publication-title: J. Can. Pet. Technol. doi: 10.2118/94-02-05 – volume: 21 start-page: 516 year: 2015 end-page: 525 ident: CR52 article-title: Constant power and constant temperature microwave regeneration of toluene and acetone loaded on microporous activated carbon from agricultural residue publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2014.03.014 – volume: 49 start-page: 4536 year: 2015 end-page: 4542 ident: CR53 article-title: Using microwave heating to improve the desorption efficiency of high molecular weight VOC from beaded activated carbon publication-title: Environ. Sci. Technol. doi: 10.1021/es505953c – volume: 152 start-page: 495 year: 2017 end-page: 504 ident: CR61 article-title: Numerical modelling of microwave heating treatment for tight gas sand reservoirs publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2017.01.055 – volume: 36 start-page: 360 year: 2012 end-page: 369 ident: CR49 article-title: Temperature profile prediction within selected materials heated by microwaves at 2.45 GHz publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2011.10.049 – volume: 53 start-page: 5631 year: 2020 end-page: 5640 ident: CR65 article-title: Experimental study on coal damage subjected to microwave heating publication-title: Rock Mech. Rock Eng. doi: 10.1007/s00603-020-02230-z – volume: 29 start-page: 865 year: 2010 end-page: 872 ident: CR79 article-title: Desorption characteristics of adsorbed gas in coal samples under coupling temperature and uniaxial compression publication-title: China J. Rock. Mech. Eng. – volume: 13 start-page: 681 year: 1961 end-page: 690 ident: CR26 article-title: Laboratory studies of oil recovery by steam injection publication-title: J. Petroleum Technol. doi: 10.2118/1537-G-PA – volume: 131 start-page: 392 year: 2014 end-page: 399 ident: CR23 article-title: Accelerating methane desorption in lump anthracite modified by electrochemical treatment publication-title: Int. J. Coal Geol. doi: 10.1016/j.coal.2014.06.011 – volume: 150 start-page: 104897 year: 2020 ident: CR78 article-title: Strength degradation mechanism of iron coke prepared by mixed coal and Fe O publication-title: J. Anal. Appl. Pyrol. doi: 10.1016/j.jaap.2020.104897 – volume: 150 start-page: 118 year: 2018 end-page: 125 ident: CR66 article-title: Experimental investigation on variation of physical properties of coal particles subjected to microwave irradiation publication-title: J. Appl. Geophys. doi: 10.1016/j.jappgeo.2017.12.011 – volume: 209 start-page: 118444 year: 2020 ident: CR71 article-title: Torrefied biomass fuels as a renewable alternative to coal in co-firing for power generation publication-title: Energy doi: 10.1016/j.energy.2020.118444 – volume: 92 start-page: 54 year: 2014 end-page: 65 ident: CR55 article-title: A kinetic study of microwave and fluidized-bed drying of a Chinese lignite publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2013.06.013 – volume: 73 start-page: 250 year: 2008 end-page: 258 ident: CR33 article-title: Temperature dependence of sorption of gases by coals and charcoals publication-title: Int. J. Coal Geol. doi: 10.1016/j.coal.2007.05.001 – volume: 313 start-page: 113494 year: 2020 ident: CR1 article-title: Thermodynamic and kinetic study of synthesised graphene oxide-CuO nanocomposites: A way forward to fuel additive and photocatalytic potentials publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2020.113494 – volume: 47 start-page: 619 year: 2009 end-page: 627 ident: CR17 article-title: Enhanced coalbed methane recovery publication-title: J. Supercrit. Fluid doi: 10.1016/j.supflu.2008.08.013 – volume: 40 start-page: 101193 year: 2020 ident: CR5 article-title: The effect of variable operating parameters for hydrocarbon fuel formation from CO by molten salts electrolysis publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2020.101193 – volume: 43 start-page: 641 year: 2020 end-page: 648 ident: CR9 article-title: Catalytic hydrogen production from methane partial oxidation: Mechanism and kinetic study publication-title: Chem. Eng. Technol. doi: 10.1002/ceat.201900339 – volume: 22 start-page: 609 year: 2015 end-page: 617 ident: CR35 article-title: Temperature-dependent diffusion process of methane through dry crushed coal publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2014.12.022 – volume: 84 start-page: 423 year: 2005 end-page: 427 ident: CR57 article-title: Increased coal grindability as a result of microwave pretreatment at economic energy inputs publication-title: Fuel doi: 10.1016/j.fuel.2004.09.019 – volume: 36 start-page: 4 year: 2005 end-page: 7 ident: CR75 article-title: Influence of microspore structure of coal on coal seam permeability publication-title: Saf. Coal Mines – volume: 177 start-page: 237 year: 2018 end-page: 245 ident: CR63 article-title: A coupled electromagnetic irradiation, heat and mass transfer model for microwave heating and its numerical simulation on coal publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2018.04.034 – volume: 50 start-page: 363 year: 2002 end-page: 387 ident: CR13 article-title: Hydrogeologic factors affecting gas content distribution in coal beds publication-title: Int. J. Coal Geol. doi: 10.1016/S0166-5162(02)00135-0 – volume: 38 start-page: 1044 year: 2013 end-page: 1049 ident: CR32 article-title: Numerical simulation of the coupled thermal-fluid-solid mathematical models during extracting methane in low-permeability coal bed by heat injection publication-title: J. China Coal Soc. – volume: 98 start-page: 702 year: 2016 end-page: 726 ident: CR27 article-title: Modelling microwave heating of discrete samples of oil palm kernels publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.01.009 – volume: 34 start-page: 1174 year: 2016 end-page: 1190 ident: CR40 article-title: Complex thermal coal-gas interactions in heat injection enhanced CBM recovery publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2016.07.074 – volume: 78 start-page: 1 year: 2009 end-page: 15 ident: CR14 article-title: Preliminary evaluation of the coalbed methane production potential and its geological controls in the Weibei Coalfield, Southeastern Ordos Basin, China publication-title: Int. J. Coal Geol. doi: 10.1016/j.coal.2008.09.011 – ident: CR24 – volume: 71 start-page: 84 year: 2013 end-page: 91 ident: CR50 article-title: Effects of microwave irradiation treatment on physicochemical characteristics of Chinese low-rank coals publication-title: Energ. Convers. Manag. doi: 10.1016/j.enconman.2013.03.021 – volume: 5 start-page: 17 year: 1989 end-page: 32 ident: CR44 article-title: Solvent analog model of steam assisted gravity drainage publication-title: AOSTRA J. Res. – volume: 35 start-page: 226 year: 2021 end-page: 236 ident: CR22 article-title: Changes in pore structure and permeability of middle-high rank coal subjected to liquid nitrogen freeze-thaw publication-title: Energ. Fuel. doi: 10.1021/acs.energyfuels.0c02294 – volume: 131 start-page: 392 year: 2014 ident: 89193_CR23 publication-title: Int. J. Coal Geol. doi: 10.1016/j.coal.2014.06.011 – volume: 57 start-page: 488 year: 1992 ident: 89193_CR42 publication-title: Geophysics doi: 10.1190/1.1443264 – volume: 44 start-page: 27224 year: 2019 ident: 89193_CR2 publication-title: Int. J. Hydrogen Energ. doi: 10.1016/j.ijhydene.2019.08.248 – volume: 167 start-page: 188 year: 2016 ident: 89193_CR12 publication-title: Fuel doi: 10.1016/j.fuel.2015.11.038 – volume: 84 start-page: 423 year: 2005 ident: 89193_CR57 publication-title: Fuel doi: 10.1016/j.fuel.2004.09.019 – volume: 36 start-page: 4 year: 2005 ident: 89193_CR75 publication-title: Saf. Coal Mines – ident: 89193_CR24 doi: 10.2172/1054498 – ident: 89193_CR45 doi: 10.2118/62550-MS – volume: 78 start-page: 1 year: 2009 ident: 89193_CR14 publication-title: Int. J. Coal Geol. doi: 10.1016/j.coal.2008.09.011 – volume: 49 start-page: 33 year: 2020 ident: 89193_CR3 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.01.008 – volume: 101 start-page: 36 year: 2012 ident: 89193_CR11 publication-title: Int. J. Coal Geol. doi: 10.1016/j.coal.2012.05.011 – volume: 209 start-page: 118444 year: 2020 ident: 89193_CR71 publication-title: Energy doi: 10.1016/j.energy.2020.118444 – volume: 26 start-page: 552 year: 2001 ident: 89193_CR74 publication-title: J. China Coal Soc. – volume: 26 start-page: 5048 year: 2012 ident: 89193_CR39 publication-title: Energy Fuel doi: 10.1021/ef300598e – volume: 36 start-page: 360 year: 2012 ident: 89193_CR49 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2011.10.049 – volume: 35 start-page: 226 year: 2021 ident: 89193_CR22 publication-title: Energ. Fuel. doi: 10.1021/acs.energyfuels.0c02294 – volume: 34 start-page: 1174 year: 2016 ident: 89193_CR40 publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2016.07.074 – volume: 132 start-page: 12 year: 2014 ident: 89193_CR37 publication-title: Fuel doi: 10.1016/j.fuel.2014.04.084 – volume: 30 start-page: 8832 year: 2016 ident: 89193_CR25 publication-title: Energ. Fuel doi: 10.1021/acs.energyfuels.6b01720 – volume: 26 start-page: 193 year: 2015 ident: 89193_CR19 publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2015.05.035 – volume: 24 start-page: 88 year: 2019 ident: 89193_CR20 publication-title: Acta Montan. Slovaca – volume: 40 start-page: 101193 year: 2020 ident: 89193_CR5 publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2020.101193 – volume: 128 start-page: 184 year: 2015 ident: 89193_CR28 publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2015.02.020 – volume: 26 start-page: 615 year: 2016 ident: 89193_CR46 publication-title: Int. J. Min. Sci. Technol. doi: 10.1016/j.ijmst.2016.05.013 – volume: 152 start-page: 495 year: 2017 ident: 89193_CR61 publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2017.01.055 – volume: 86 start-page: 2574 year: 2007 ident: 89193_CR16 publication-title: Fuel doi: 10.1016/j.fuel.2007.02.005 – volume: 71 start-page: 84 year: 2013 ident: 89193_CR50 publication-title: Energ. Convers. Manag. doi: 10.1016/j.enconman.2013.03.021 – volume: 73 start-page: 250 year: 2008 ident: 89193_CR33 publication-title: Int. J. Coal Geol. doi: 10.1016/j.coal.2007.05.001 – volume: 50 start-page: 8632 year: 2011 ident: 89193_CR51 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie102490v – volume: 88 start-page: 75 year: 2011 ident: 89193_CR58 publication-title: Int. J. Coal Geol. doi: 10.1016/j.coal.2011.07.007 – volume: 78 start-page: 103313 year: 2020 ident: 89193_CR8 publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2020.103313 – volume: 227 start-page: 434 year: 2018 ident: 89193_CR64 publication-title: Fuel doi: 10.1016/j.fuel.2018.04.066 – volume: 75 start-page: 1483 year: 1996 ident: 89193_CR67 publication-title: Fuel doi: 10.1016/0016-2361(96)00142-1 – volume: 40 start-page: 89 year: 2011 ident: 89193_CR31 publication-title: J. China Univ. Min. Technol. – volume: 288 start-page: 119618 year: 2021 ident: 89193_CR18 publication-title: Fuel doi: 10.1016/j.fuel.2020.119618 – volume: 189 start-page: 49 year: 2019 ident: 89193_CR62 publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2019.03.002 – volume: 150 start-page: 104897 year: 2020 ident: 89193_CR78 publication-title: J. Anal. Appl. Pyrol. doi: 10.1016/j.jaap.2020.104897 – volume: 146 start-page: 41 year: 2015 ident: 89193_CR59 publication-title: Fuel doi: 10.1016/j.fuel.2015.01.019 – volume: 177 start-page: 237 year: 2018 ident: 89193_CR63 publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2018.04.034 – volume: 3 start-page: 1545 year: 2018 ident: 89193_CR10 publication-title: Chem. Select – volume: 240 start-page: 118239 year: 2019 ident: 89193_CR4 publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.118239 – volume: 33 start-page: 44 year: 1994 ident: 89193_CR43 publication-title: J. Can. Pet. Technol. doi: 10.2118/94-02-05 – volume: 17 start-page: 2019 year: 2019 ident: 89193_CR7 publication-title: Int. J. Chem. React. Eng. – volume: 284 start-page: 119043 year: 2021 ident: 89193_CR21 publication-title: Fuel doi: 10.1016/j.fuel.2020.119043 – volume: 50 start-page: 363 year: 2002 ident: 89193_CR13 publication-title: Int. J. Coal Geol. doi: 10.1016/S0166-5162(02)00135-0 – volume: 13 start-page: 681 year: 1961 ident: 89193_CR26 publication-title: J. Petroleum Technol. doi: 10.2118/1537-G-PA – volume: 43 start-page: 641 year: 2020 ident: 89193_CR9 publication-title: Chem. Eng. Technol. doi: 10.1002/ceat.201900339 – volume: 313 start-page: 113494 year: 2020 ident: 89193_CR1 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2020.113494 – volume: 21 start-page: 516 year: 2015 ident: 89193_CR52 publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2014.03.014 – volume: 31 start-page: 9693 year: 2017 ident: 89193_CR54 publication-title: Energy Fuel doi: 10.1021/acs.energyfuels.7b01260 – volume: 29 start-page: 865 year: 2010 ident: 89193_CR79 publication-title: China J. Rock. Mech. Eng. – volume: 34 start-page: 55 year: 2001 ident: 89193_CR73 publication-title: J. Phys. D. doi: 10.1088/0022-3727/34/13/201 – volume: 29 start-page: 505 year: 2012 ident: 89193_CR30 publication-title: J. Min. Saf. Eng. – volume: 5 start-page: 17 year: 1989 ident: 89193_CR44 publication-title: AOSTRA J. Res. – volume: 38 start-page: 1044 year: 2013 ident: 89193_CR32 publication-title: J. China Coal Soc. – volume: 53 start-page: 5631 year: 2020 ident: 89193_CR65 publication-title: Rock Mech. Rock Eng. doi: 10.1007/s00603-020-02230-z – volume: 98 start-page: 702 year: 2016 ident: 89193_CR27 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.01.009 – volume: 32 start-page: 601 year: 2014 ident: 89193_CR36 publication-title: Energ. Explor. Exploit. doi: 10.1260/0144-5987.32.4.601 – volume: 112 start-page: 185 year: 2013 ident: 89193_CR29 publication-title: Fuel doi: 10.1016/j.fuel.2013.04.084 – volume: 17 start-page: 2018 year: 2019 ident: 89193_CR6 publication-title: Int. J. Chem. React. Eng. – volume: 73 start-page: 189 year: 2004 ident: 89193_CR72 publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2003.10.006 – volume: 92 start-page: 54 year: 2014 ident: 89193_CR55 publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2013.06.013 – volume: 150 start-page: 118 year: 2018 ident: 89193_CR66 publication-title: J. Appl. Geophys. doi: 10.1016/j.jappgeo.2017.12.011 – volume: 34 start-page: 324 year: 2011 ident: 89193_CR34 publication-title: Energy Source A. doi: 10.1080/15567036.2011.578112 – volume: 91 start-page: 75 year: 2018 ident: 89193_CR60 publication-title: J. Energy Inst. doi: 10.1016/j.joei.2016.10.005 – volume: 102 start-page: 760 year: 2012 ident: 89193_CR77 publication-title: Fuel doi: 10.1016/j.fuel.2012.07.023 – volume: 27 start-page: 687 year: 2017 ident: 89193_CR15 publication-title: Int. J. Mining Sci. Technol. doi: 10.1016/j.ijmst.2017.05.014 – volume: 49 start-page: 4536 year: 2015 ident: 89193_CR53 publication-title: Environ. Sci. Technol. doi: 10.1021/es505953c – volume: 282 start-page: 118506 year: 2020 ident: 89193_CR70 publication-title: Fuel doi: 10.1016/j.fuel.2020.118506 – volume: 47 start-page: 619 year: 2009 ident: 89193_CR17 publication-title: J. Supercrit. Fluid doi: 10.1016/j.supflu.2008.08.013 – volume: 222 start-page: 56 year: 2018 ident: 89193_CR69 publication-title: Fuel doi: 10.1016/j.fuel.2018.02.125 – volume: 48 start-page: 133 year: 2001 ident: 89193_CR68 publication-title: Int. J. Coal Geol. doi: 10.1016/S0166-5162(01)00051-9 – volume: 22 start-page: 609 year: 2015 ident: 89193_CR35 publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2014.12.022 – volume: 107 start-page: 18 year: 2013 ident: 89193_CR48 publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2013.02.014 – volume: 16 start-page: 125 year: 2009 ident: 89193_CR41 publication-title: Sci. Iran. – volume: 2 start-page: 23 year: 1993 ident: 89193_CR76 publication-title: Coal Eng. – volume: 35 start-page: 434 year: 2010 ident: 89193_CR38 publication-title: J. China Coal Soc. – volume: 151 start-page: 206 year: 2015 ident: 89193_CR47 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.04.031 – volume: 233 start-page: 186 year: 2013 ident: 89193_CR56 publication-title: Powder Technol. doi: 10.1016/j.powtec.2012.09.010 |
SSID | ssj0000529419 |
Score | 2.405569 |
Snippet | As a clean energy resource, coalbed methane (CBM) has drawn worldwide attention. However, the CBM reservoir has strong adsorption capacity and low permeability... Abstract As a clean energy resource, coalbed methane (CBM) has drawn worldwide attention. However, the CBM reservoir has strong adsorption capacity and low... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9618 |
SubjectTerms | 639/4077/4082/4059 639/4077/4082/4090 Adsorption Clean energy Coalbed methane Desorption Energy sources Heating Humanities and Social Sciences Injection Membrane permeability Methane Microwave heating multidisciplinary Permeability Science Science (multidisciplinary) Thermal energy |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxUxEA5SKPgitt7WVongm4bu5rp5VLEUQfHBQt9CNhcs1N3Sc2rpv3cm2XPa4_XFx91JdkNmkvmSfJkh5KVvh2Cy75m2WTMJmJp5EzsGrsHybHMYEm4NfPykj47lhxN1civVF3LCanjg2nEHqeXJc9sGD66_j9ybLJJIwQaAOqHkF-bg824tpmpUb25lZ-dbMq3oDxbgqfA2Ge9YbwG1MLXhiUrA_t-hzF_Jkj-dmBZHdHif3JsRJH1TW75D7qRxl2zXnJLXD0j6XAl200hnrgadMv2GvLsr_z1RnHzhuxTkYfJnQ4oUs0j7MdGYFtNFmULoippOcZ8WnkYMC3t6U_0hOT58_-XdEZtzKbCgjFkyK6Vqs4zRaxOCsG3kuu8tLEhEGqTqohl8DDYCHhPIV8sgAqTSqtYn22YtHpGtcRrTE0KT0TqAjzPBWilC9B5gRcw--kHDz2RDulW_ujAHGsd8F2euHHiL3lVdONCFK7pwqiGv1nXOa5iNv5Z-i-pal8QQ2eUFGI6bDcf9y3Aasr9StpvH7cJxhXhJg8NuyIu1GEYcHqOAJqbLWkZz3AlqyONqG-uWCIF03Q4kZsNqNpq6KRlPv5ao3n1Xjqkb8nplXzfN-nNXPP0fXbFH7nIcGMjjVPtka3lxmZ4B1loOz8uw-gHw2yVq priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkLKu9AQUbiBlYTO7HjU9UiqgoJxIFKe7McP6BSScruthX_nhnHyWp59Lg7zq43M575dubLDCFvbNk5FW3LpI6S1YCpmVW-YhAaNI86ui5gauDTZ3lyWn9cNIuccFtlWuXkE5Oj9oPDHPk-bzCSSXClBxc_GU6NwupqHqFxm9zB1mVI6VILNedYsIpVVzo_K1OKdn8F8QqfKeMVazVgF9ZsxaPUtv9fWPNvyuQfddMUjo53yf2MI-nhqPgH5FboH5K742TJX49I-DLS7IaeZsYGHSL9gey7a3sVKLpg-FwKcjfY8y54irOkbR-oD6thmRwJnQjqFLO18KrH5rBnm8sfk9PjD1_fn7A8UYG5Rqk103XdlLH23krlnNCl57JtNfwtEaGrm8qrznqnPaAygay1CCLAK2VT2qDLKMUTstMPfXhGaFBSOoh0ymldC-etBXDho_W2k_BldUGq6b4al9uN49SLc5PK3qI1oy4M6MIkXZimIG_nay7GZhs3rj5Cdc0rsVF2emNYfjP53JlQ8mC5Lp0F5Nh6blUUQQSnHSBlV_GC7E3KNvn0rszG1gryehbDucNiCmhiuBzXSI75oII8HW1j3okQSNqtQKK2rGZrq9uS_ux76u3dVqlYXZB3k31ttvX_W_H85l_xgtzjaPLI02z2yM56eRleApZad6_SgfkNohwclQ priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9UwEB7WFcEX8W51lQi-abFNmqR51IPLIig-uLBvIc1FF3ZbOees4r93Jr0sR1fBx3aSNnQmma8zXyYAL1zVeZ1cWyqTVNkgpi6dDnWJrsHwZJLvIoUGPnxUR8fN-xN5sgd83guTSfu5pGVepmd22OsNOhraDMbrsjUIOkp5Da5T6Xay6pVaLXEVylw1tZn2x1SivaLrjg_Kpfqvwpd_0iR_y5VmF3R4G25N2JG9GUd7B_ZifxdujKdJ_rwH8dNIrRt6NrE02JDYOTHufrjvkdGyi89lKPeDO-tiYHR-tOsjC3EzrPPiwWZSOqMILV71VBD29LL7fTg-fPd5dVROpyiUXmq9LU3TyCo1ITilvRemCly1rcFfERG7RtZBdy54ExCJCWKqJRQhRqlk5aKpkhIPYL8f-vgIWNRKefRu2hvTCB-cQ0ARkguuU_iypoB6_q7WTyXG6aSLM5tT3aK1oy4s6sJmXVhZwMulz7exwMY_W78ldS0tqTh2vjGsv9jJWGyseHTcVN4hWmwDdzqJKKI3HtGxr3kBB7Oy7TRjN5ZLQkoKXXUBzxcxzjVKoKAmhouxjeIUAyrg4Wgby0iEIKJujRK9YzU7Q92V9Kdfcz3vts4J6gJezfZ1Oay_f4rH_9f8CdzkNAWIqykPYH-7vohPEU9tu2d5Av0CIvIafw priority: 102 providerName: Springer Nature |
Title | Promotion effects of microwave heating on coalbed methane desorption compared with conductive heating |
URI | https://link.springer.com/article/10.1038/s41598-021-89193-5 https://www.ncbi.nlm.nih.gov/pubmed/33953313 https://www.proquest.com/docview/2522236718 https://www.proquest.com/docview/2522620933 https://pubmed.ncbi.nlm.nih.gov/PMC8100304 https://doaj.org/article/e02ea290ca3248d2a7f3e3ec9c800c12 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_tQ0i8IL4JbJWReINAYid2_DBNXbVpqrRpAir1LXL8MSaVBNoO2H-_s5N0KhQknqL47MTy3fl-ts93AG9UUmnhVBFz6XicIaaOlTBpjKZBUiedrqzfGjg756eTbDzNp1vQpzvqBnCxcWnn80lN5rP3v77fHKLCH7RXxosPCzRC_qIYTeNCIiCJ823YRcskvKKedXC_jfVNZZbK7u7M5qZr9imE8d-EPf90ofztHDWYp5OH8KDDlWTYCsIj2LL1Y7jXZpq8eQL2onW7a2rSeXCQxpGv3hvvp_phiZ-S8bsE6bpRs8oa4nNLq9oSYxfNPEwspHdYJ373Ft9qHyz26q75U5icHH8encZdhoVY50IsY5lleeIyYxQXWjOZGMqLQuIyhdkqy1MjKmW0NIjSmPdic0hC_JLkibIycZw9g526qe0LIFZwrtHyCS1lxrRRCsGGccqoiuPPsgjSflxL3YUf91kwZmU4BmdF2fKiRF6UgRdlHsHbVZtvbfCNf9Y-8uxa1fSBs0NBM78sOz0sbUKtojLRCpFkYagSjllmtdSInHVKI9jrmV32wljS3KMojmY8gtcrMuqhP1xBTjTXbR1O_f5QBM9b2Vj1hDHvxJsiRaxJzVpX1yn11ZcQ67tIw-F1BO96-brr1t-H4uX_VX8F96lXAe_Hme_BznJ-bfcRay2rAWyLqRjA7nA4_jTG59Hx-cVHLB3x0SDsXwyCit0CS3Up_A |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9QwDLfGTQheEN8UBgQJnqBam7Rp84AQg003tp0mtEl7C2mSwqTRjrsb0_4p_kbsfp2Oj73t8c5pLxc79i-2YwO8NFFhs9LkoVSlDBPE1KHJXByiaVC8VKUtPLkG9iZyfJh8OkqPVuBXfxeG0ip7ndgoaldb8pGv85QsmURV-u70R0hdoyi62rfQaMVix1-c45Ft9nb7I_L3FedbmwcfxmHXVSC0aZbNQ5UkaVQmzhmZWYtHfsdlniuE5sIXSRq7rDDOKofIRFDmVokktNlRGhmvolIKfO81WE0EHmVGsLqxOdn_PHh1KG6WxKq7nROJfH2GFpJusfE4zBWipTBdsoBNo4B_odu_kzT_iNQ2BnDrNtzqkCt734raHVjx1V243vayvLgHfr9N7Ksr1uWIsLpk3ynf79z89IyUPr6XId3W5qTwjlH3alN55vysnjaqi_Up8Yz8w_iponK0x4vH78Phlaz2AxhVdeUfAfOZlBZta2aVSoR1xiCccaVxppD4Y0kAcb-u2nYFzqnPxoluAu0i1y0vNPJCN7zQaQCvh2dO2_Iel47eIHYNI6k0d_NFPf2qu52ufcS94SqyBrFq7rjJSuGFt8oiNrcxD2CtZ7bu9MVML6Q7gBcDGXc6hW-QE_VZO0Zy8kAF8LCVjWEmQlCacIyUbElqlqa6TKmOvzXVxPO4CY8H8KaXr8W0_r8Ujy__F8_hxvhgb1fvbk92nsBNTuJPWaLpGozm0zP_FJHcvHjWbR8GX656x_4G9bdYzA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEagXxJtAASPBCaJN7MSODwgBZdVSqHqg0t6M4wdUapOyu6XqX-PXMeMku1oevfWYtZN4Pc_MfJ4h5LnJaiuDqVKhgkgL8KlTI12egmlQLKhga4-hgc97Yvug-DgpJ2vk13AWBmGVg06Mitq1FmPkI1aiJROgSkehh0Xsb43fnPxIsYMUZlqHdhodi-z68zP4fJu93tkCWr9gbPzhy_vttO8wkNpSynmqiqLMQuGcEdJa-Px3TFSVAjed-7oocydr46xy4KVwRHEFGAL7nZWZ8SoLgsNzr5Crkpc5ypicyEV8BzNoRa76czoZr0YzsJV4no3laaXAb0rLFVsYWwb8y8_9G675R842msLxTXKj92Hp247pbpE139wm17qulud3iN_vIH5tQ3u0CG0DPUbk35n56Smqf3guhXHbmqPaO4p9rE3jqfOzdhqVGB3A8RQjxXDVYGHaw-Xtd8nBpez1PbLetI1_QKiXQliwstIqVXDrjAHHxgXjTC3gZUVC8mFfte1LnWPHjSMdU-680h0tNNBCR1roMiEvF_ecdIU-Lpz9Dsm1mIlFuuMP7fSb7mVe-4x5w1RmDXitlWNGBu65t8qCl25zlpDNgdi61xwzveTzhDxbDIPMYyIHKNGednMEw1hUQu53vLFYCecIGM5hRK5wzcpSV0eaw--xrniVx0R5Ql4N_LVc1v-34uHF_-IpuQ5yqj_t7O0-IhsMuR_houUmWZ9PT_1jcOnm9ZMoO5R8vWxh_Q1KDFuc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Promotion+effects+of+microwave+heating+on+coalbed+methane+desorption+compared+with+conductive+heating&rft.jtitle=Scientific+reports&rft.au=Wang%2C+Zhijun&rft.au=Wang%2C+Xiaojuan&rft.date=2021-05-05&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-021-89193-5&rft.externalDocID=10_1038_s41598_021_89193_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |