Promotion effects of microwave heating on coalbed methane desorption compared with conductive heating

As a clean energy resource, coalbed methane (CBM) has drawn worldwide attention. However, the CBM reservoir has strong adsorption capacity and low permeability and thus requires stimulation. As a means to stimulate coalbed methane recovery, thermal injection faces geological and economic challenges...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 11; no. 1; pp. 9618 - 16
Main Authors Wang, Zhijun, Wang, Xiaojuan
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 05.05.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As a clean energy resource, coalbed methane (CBM) has drawn worldwide attention. However, the CBM reservoir has strong adsorption capacity and low permeability and thus requires stimulation. As a means to stimulate coalbed methane recovery, thermal injection faces geological and economic challenges because it uses conventional conductive heating (CH) to transfer heat. Realized by the conversion of the electromagnetic energy into the thermal energy, microwave heating (MH) may be a sound stimulation method. Although previous research suggested that MH had potential as a stimulation method for coalbed methane recovery, it is not clear if MH is superior to CH for enhancing coalbed methane recovery. This paper compares the effect of MH and CH on methane desorption from coal using purpose-built experimental equipment. To compare the MH and CH experimental results, the desorption temperature for each CH desorption test was set to the maximum temperature reached in the correlative MH desorption test. The results show that although the cumulative desorbed volume (CDV) of methane under MH was less than that desorbed by CH in the initial desorption stage, the final total CDV under MH for the three different power settings was ~ 12% to ~ 21% more than that desorbed by CH at the same temperatures. CH and MH both change the sample’s microstructure but MH enlarges the pores, decreases methane adsorption, promotes methane diffusion, and improves permeability more effectively than CH. Rapid temperature rise and the changes in the coal’s microstructure caused by MH were the main reasons for its superior performance. These findings may provide reference for selecting the most appropriate type of heating for thermal injection assisted coalbed methane recovery.
AbstractList As a clean energy resource, coalbed methane (CBM) has drawn worldwide attention. However, the CBM reservoir has strong adsorption capacity and low permeability and thus requires stimulation. As a means to stimulate coalbed methane recovery, thermal injection faces geological and economic challenges because it uses conventional conductive heating (CH) to transfer heat. Realized by the conversion of the electromagnetic energy into the thermal energy, microwave heating (MH) may be a sound stimulation method. Although previous research suggested that MH had potential as a stimulation method for coalbed methane recovery, it is not clear if MH is superior to CH for enhancing coalbed methane recovery. This paper compares the effect of MH and CH on methane desorption from coal using purpose-built experimental equipment. To compare the MH and CH experimental results, the desorption temperature for each CH desorption test was set to the maximum temperature reached in the correlative MH desorption test. The results show that although the cumulative desorbed volume (CDV) of methane under MH was less than that desorbed by CH in the initial desorption stage, the final total CDV under MH for the three different power settings was ~ 12% to ~ 21% more than that desorbed by CH at the same temperatures. CH and MH both change the sample's microstructure but MH enlarges the pores, decreases methane adsorption, promotes methane diffusion, and improves permeability more effectively than CH. Rapid temperature rise and the changes in the coal's microstructure caused by MH were the main reasons for its superior performance. These findings may provide reference for selecting the most appropriate type of heating for thermal injection assisted coalbed methane recovery.As a clean energy resource, coalbed methane (CBM) has drawn worldwide attention. However, the CBM reservoir has strong adsorption capacity and low permeability and thus requires stimulation. As a means to stimulate coalbed methane recovery, thermal injection faces geological and economic challenges because it uses conventional conductive heating (CH) to transfer heat. Realized by the conversion of the electromagnetic energy into the thermal energy, microwave heating (MH) may be a sound stimulation method. Although previous research suggested that MH had potential as a stimulation method for coalbed methane recovery, it is not clear if MH is superior to CH for enhancing coalbed methane recovery. This paper compares the effect of MH and CH on methane desorption from coal using purpose-built experimental equipment. To compare the MH and CH experimental results, the desorption temperature for each CH desorption test was set to the maximum temperature reached in the correlative MH desorption test. The results show that although the cumulative desorbed volume (CDV) of methane under MH was less than that desorbed by CH in the initial desorption stage, the final total CDV under MH for the three different power settings was ~ 12% to ~ 21% more than that desorbed by CH at the same temperatures. CH and MH both change the sample's microstructure but MH enlarges the pores, decreases methane adsorption, promotes methane diffusion, and improves permeability more effectively than CH. Rapid temperature rise and the changes in the coal's microstructure caused by MH were the main reasons for its superior performance. These findings may provide reference for selecting the most appropriate type of heating for thermal injection assisted coalbed methane recovery.
As a clean energy resource, coalbed methane (CBM) has drawn worldwide attention. However, the CBM reservoir has strong adsorption capacity and low permeability and thus requires stimulation. As a means to stimulate coalbed methane recovery, thermal injection faces geological and economic challenges because it uses conventional conductive heating (CH) to transfer heat. Realized by the conversion of the electromagnetic energy into the thermal energy, microwave heating (MH) may be a sound stimulation method. Although previous research suggested that MH had potential as a stimulation method for coalbed methane recovery, it is not clear if MH is superior to CH for enhancing coalbed methane recovery. This paper compares the effect of MH and CH on methane desorption from coal using purpose-built experimental equipment. To compare the MH and CH experimental results, the desorption temperature for each CH desorption test was set to the maximum temperature reached in the correlative MH desorption test. The results show that although the cumulative desorbed volume (CDV) of methane under MH was less than that desorbed by CH in the initial desorption stage, the final total CDV under MH for the three different power settings was ~ 12% to ~ 21% more than that desorbed by CH at the same temperatures. CH and MH both change the sample’s microstructure but MH enlarges the pores, decreases methane adsorption, promotes methane diffusion, and improves permeability more effectively than CH. Rapid temperature rise and the changes in the coal’s microstructure caused by MH were the main reasons for its superior performance. These findings may provide reference for selecting the most appropriate type of heating for thermal injection assisted coalbed methane recovery.
Abstract As a clean energy resource, coalbed methane (CBM) has drawn worldwide attention. However, the CBM reservoir has strong adsorption capacity and low permeability and thus requires stimulation. As a means to stimulate coalbed methane recovery, thermal injection faces geological and economic challenges because it uses conventional conductive heating (CH) to transfer heat. Realized by the conversion of the electromagnetic energy into the thermal energy, microwave heating (MH) may be a sound stimulation method. Although previous research suggested that MH had potential as a stimulation method for coalbed methane recovery, it is not clear if MH is superior to CH for enhancing coalbed methane recovery. This paper compares the effect of MH and CH on methane desorption from coal using purpose-built experimental equipment. To compare the MH and CH experimental results, the desorption temperature for each CH desorption test was set to the maximum temperature reached in the correlative MH desorption test. The results show that although the cumulative desorbed volume (CDV) of methane under MH was less than that desorbed by CH in the initial desorption stage, the final total CDV under MH for the three different power settings was ~ 12% to ~ 21% more than that desorbed by CH at the same temperatures. CH and MH both change the sample’s microstructure but MH enlarges the pores, decreases methane adsorption, promotes methane diffusion, and improves permeability more effectively than CH. Rapid temperature rise and the changes in the coal’s microstructure caused by MH were the main reasons for its superior performance. These findings may provide reference for selecting the most appropriate type of heating for thermal injection assisted coalbed methane recovery.
ArticleNumber 9618
Author Wang, Zhijun
Wang, Xiaojuan
Author_xml – sequence: 1
  givenname: Zhijun
  surname: Wang
  fullname: Wang, Zhijun
  email: wzj0537@163.com
  organization: State Key Laboratory Cultivation Base for Gas Geology and Gas Control (Henan Polytechnic University), School of Safety Science and Engineering, Henan Polytechnic University, Collaborative Innovation Center of Central Plains Economic Region for Coalbed /Shale Gas, Henan Province
– sequence: 2
  givenname: Xiaojuan
  surname: Wang
  fullname: Wang, Xiaojuan
  organization: State Key Laboratory Cultivation Base for Gas Geology and Gas Control (Henan Polytechnic University), School of Safety Science and Engineering, Henan Polytechnic University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33953313$$D View this record in MEDLINE/PubMed
BookMark eNp9Uktv1DAQtlARfdA_wAFF4sIlYHviJL4goQpKpUpwgLPltSe7XiX2Yjut-u9xNy19HOqLH99Dn2fmmBz44JGQd4x-YhT6z6lhQvY15azuJZNQi1fkiNNG1Bw4P3h0PiSnKW1pWYLLhsk35BBACgAGRwR_xTCF7IKvcBjQ5FSFoZqcieFaX2G1QZ2dX1cFN0GPK7TVhHmjPVYWU4i7vdSEaadjwa5d3pSbt7PJ7kH-lrwe9Jjw9G4_IX--f_t99qO-_Hl-cfb1sjai63Itm0bQobFWt50xIKnlbd9LzjrAVSOY7VbaGmlBlH9RCkOBZNdSQTVKOrRwQi4WXxv0Vu2im3S8UUE7tX8Ica10zM6MqJBy1FxSo4E3veW6GwABjTQ9pYbx4vVl8drNqwmtQZ-jHp-YPkW826h1uFI9K9FoUww-3hnE8HfGlNXkksFxLMULc1JccN5yKgEK9cMz6jbM0ZdS7Vkc2o71hfX-caL_Ue67WQj9QijdSynioIzL-rZDJaAbFaPqdnbUMjuqzI7az44SRcqfSe_dXxTBIkqF7NcYH2K_oPoHfgDWiw
CitedBy_id crossref_primary_10_1016_j_ijrmms_2024_105785
crossref_primary_10_1016_j_fuel_2021_121613
crossref_primary_10_1016_j_measurement_2024_115278
crossref_primary_10_1021_acsomega_1c05562
crossref_primary_10_1021_acsomega_1c04056
crossref_primary_10_1016_j_energy_2024_130797
crossref_primary_10_1016_j_ijhydene_2022_04_217
crossref_primary_10_3390_app14010174
crossref_primary_10_1021_acsomega_2c06425
Cites_doi 10.1021/acs.energyfuels.6b01720
10.1016/j.jngse.2020.103313
10.1016/j.fuel.2015.11.038
10.1021/acs.energyfuels.7b01260
10.1016/j.ijmst.2016.05.013
10.1016/j.fuel.2018.02.125
10.1260/0144-5987.32.4.601
10.1016/j.petrol.2015.02.020
10.1016/j.petrol.2013.02.014
10.1016/j.fuel.2020.119618
10.1016/S0166-5162(01)00051-9
10.1016/j.ijmst.2017.05.014
10.1016/j.fuel.2007.02.005
10.1016/j.coal.2011.07.007
10.1016/j.coal.2012.05.011
10.1016/j.jclepro.2019.118239
10.1016/j.fuel.2015.01.019
10.1016/j.fuel.2014.04.084
10.1016/j.apenergy.2015.04.031
10.1016/j.fuel.2020.118506
10.1016/j.fuproc.2019.03.002
10.1016/j.jngse.2015.05.035
10.1080/15567036.2011.578112
10.1016/j.joei.2016.10.005
10.1016/j.fuel.2020.119043
10.1016/j.fuel.2012.07.023
10.1021/ef300598e
10.1016/j.hydromet.2003.10.006
10.1190/1.1443264
10.1016/j.ijhydene.2019.08.248
10.1016/j.powtec.2012.09.010
10.1088/0022-3727/34/13/201
10.1021/ie102490v
10.1016/j.fuel.2018.04.066
10.1016/0016-2361(96)00142-1
10.1016/j.jechem.2020.01.008
10.1016/j.fuel.2013.04.084
10.2118/94-02-05
10.1016/j.jiec.2014.03.014
10.1021/es505953c
10.1016/j.petrol.2017.01.055
10.1016/j.applthermaleng.2011.10.049
10.1007/s00603-020-02230-z
10.2118/1537-G-PA
10.1016/j.coal.2014.06.011
10.1016/j.jaap.2020.104897
10.1016/j.jappgeo.2017.12.011
10.1016/j.energy.2020.118444
10.1016/j.cherd.2013.06.013
10.1016/j.coal.2007.05.001
10.1016/j.molliq.2020.113494
10.1016/j.supflu.2008.08.013
10.1016/j.jcou.2020.101193
10.1002/ceat.201900339
10.1016/j.jngse.2014.12.022
10.1016/j.fuel.2004.09.019
10.1016/j.fuproc.2018.04.034
10.1016/S0166-5162(02)00135-0
10.1016/j.applthermaleng.2016.01.009
10.1016/j.jngse.2016.07.074
10.1016/j.coal.2008.09.011
10.1016/j.enconman.2013.03.021
10.1021/acs.energyfuels.0c02294
10.2172/1054498
10.2118/62550-MS
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-021-89193-5
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Science Database (ProQuest)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Publicly Available Content Database
PubMed


CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 16
ExternalDocumentID oai_doaj_org_article_e02ea290ca3248d2a7f3e3ec9c800c12
PMC8100304
33953313
10_1038_s41598_021_89193_5
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 51404101
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Key Scientific Research Project of Colleges and Universities in Henan Province
  grantid: 20A440001
  funderid: http://dx.doi.org/10.13039/501100013066
– fundername: Key Scientific Research Project of Colleges and Universities in Henan Province
  grantid: 20A440001
– fundername: National Natural Science Foundation of China
  grantid: 51404101
– fundername: ;
  grantid: 20A440001
– fundername: ;
  grantid: 51404101
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
NPM
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c577t-94450f4dda67cc390d268892173eb451d7badc9d35232003f921976050ae90f63
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:31:02 EDT 2025
Thu Aug 21 18:07:34 EDT 2025
Thu Jul 10 22:48:51 EDT 2025
Wed Aug 13 04:53:54 EDT 2025
Thu Apr 03 06:55:09 EDT 2025
Thu Apr 24 23:12:25 EDT 2025
Tue Jul 01 03:48:22 EDT 2025
Fri Feb 21 02:39:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c577t-94450f4dda67cc390d268892173eb451d7badc9d35232003f921976050ae90f63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-021-89193-5
PMID 33953313
PQID 2522236718
PQPubID 2041939
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_e02ea290ca3248d2a7f3e3ec9c800c12
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8100304
proquest_miscellaneous_2522620933
proquest_journals_2522236718
pubmed_primary_33953313
crossref_citationtrail_10_1038_s41598_021_89193_5
crossref_primary_10_1038_s41598_021_89193_5
springer_journals_10_1038_s41598_021_89193_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-05
PublicationDateYYYYMMDD 2021-05-05
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-05
  day: 05
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Hassan, Sher, Zarren, Suleiman, Tahir, Snape (CR8) 2020; 78
Gao, Lin, Yang, Li, Pang, Li (CR19) 2015; 26
Cai, Pan, Liu, Zheng, Tang, Connell, Yao, Zhou (CR36) 2014; 32
Ranganayaki, Akturk, Fryer (CR42) 1992; 57
Zhang, Ranjith, Perera, Ranathunga, Haque (CR25) 2016; 30
Wang, Rezaee, Saeedi, Josh (CR61) 2017; 152
Sehar, Sher, Zhang, Khalid, Sulejmanović, Lima (CR1) 2020; 313
Zhang, Ran, Jin, Zhang, Zhou, Sher (CR7) 2019; 17
Zhao, Zhao, Feng, Liu, Liu (CR34) 2011; 34
Moore (CR11) 2012; 101
Guo, Kang, Kang, Chai, Zhao (CR23) 2014; 131
Chen, Tang (CR74) 2001; 26
Bykov, Rybakov, Semenov (CR73) 2001; 34
Hong, Lin, Nie, Zhu, Wang, Li (CR64) 2018; 227
Senthamaraikkannan, Gates, Prasad (CR12) 2016; 167
Hu, Yang, Xu, Xu (CR66) 2018; 150
Sher, Yaqoob, Saeed, Zhang, Jahan, Klemeš (CR71) 2020; 209
Tahmasebi, Yu, Han, Zhao, Bhattacharya (CR55) 2014; 92
Fayaz, Shariaty, Atkinson, Hashisho, Phillips, Anderson, Nichols (CR53) 2015; 49
Yao, Liu, Tang, Tang, Che, Huang (CR14) 2009; 78
Li, Shi, Lin, Lu, Lu, Ye, Wang, Hong, Zhu (CR62) 2019; 189
Al-Shara, Sher, Yaqoob, Chen (CR2) 2019; 44
Wang, Xin, Tu, Wang (CR60) 2018; 91
Li, Yao, Xin, Li, Guan, Liu (CR22) 2021; 35
Tang, Li, Ripepi, Louk, Wang, Song (CR35) 2015; 22
Mao, Zhou, Hashisho, Wang, Chen, Wang (CR52) 2015; 21
Tyulenev, Litvin, Zhironkin, Gasanov (CR20) 2019; 24
Law, Liew, Chang, Chan, Leo (CR27) 2016; 98
Wei, Wen, Deng, Ma, Li, Lei, Fan, Liu (CR21) 2021; 284
He, Wang, Li, Liu, Zhang (CR79) 2010; 29
Osman, Abu-Dahrieh, McLaren, Laffir, Rooney (CR10) 2018; 3
CR45
Razavi, Kharrat (CR41) 2009; 16
Ge, Zhang, Wang, Zhou, Cen (CR50) 2013; 71
Zhang, Liu (CR76) 1993; 2
Li, Tian, Huang, Lu, Shi, Lu, Huang, Liu, Zhu (CR65) 2020; 53
Scott (CR13) 2002; 50
Mozaffari, Nikookar, Ehsani, Sahranavard, Roayaie, Mohammadi (CR29) 2013; 112
Teng, Wang, Gao, Ju (CR40) 2016; 34
Farag, Sobhy, Akyel, Doucet, Chaouki (CR49) 2012; 36
Mazzotti, Pini, Storti (CR17) 2009; 47
Willman, Valleroy, Runberg, Cornelius, Powers (CR26) 1961; 13
Liu, Guo, An, Lin, La (CR46) 2016; 26
Yin, Qiu, Zhang, Sher, Zhang, Xu, Wen (CR78) 2020; 150
Yang, Ren, Zhang, Guo (CR32) 2013; 38
Sakurovs, Day, Weir, Duffy (CR33) 2008; 73
Jiang, Yang, Xian, Xiong, Jun (CR38) 2010; 35
Salmachi, Haghighi (CR39) 2012; 26
Gürdal, Yalçın (CR68) 2001; 48
Alexeev, Feldman, Vasilenko (CR16) 2007; 86
Zhang, Fang, Jin, Zhang, Zhou, Sher (CR6) 2019; 17
Bientinesi, Petarca, Cerutti, Bandinelli, Simoni, Manotti, Maddinelli (CR48) 2013; 107
Kumar, Lester, Kingman, Bourne, Avila, Jones, Robinson, Halleck, Mathews (CR58) 2011; 88
Pang, Liu, Zhu (CR28) 2015; 128
Hai, Sher, Zarren, Liu (CR4) 2019; 240
Huang, Xu, Hu, Kizil, Chen (CR63) 2018; 177
Al-Shara, Sher, Iqbal, Sajid, Chen (CR3) 2020; 49
Zhang, Wu, Mao, Zhang, Yao (CR30) 2012; 29
Bera, Babadagli (CR47) 2015; 151
Pan, Hou, Ju, Bai, Zhao (CR77) 2012; 102
Pi, Sun, Gao, Zhu, Wang, Qu, Liu, Zhao (CR54) 2017; 31
Cherbański, Komorowska-Durka, Stefanidis, Stankiewicz (CR51) 2011; 50
Al-Juboori, Sher, Hazafa, Khan, Chen (CR5) 2020; 40
CR24
Butler (CR43) 1994; 33
Zhang (CR75) 2005; 36
Al-Harahsheh, Kingman (CR72) 2004; 73
Cai, Liu, Yao, Li, Pan (CR37) 2014; 132
Wang, Ma, Wei, Li (CR69) 2018; 222
Xia, Yang, Liang (CR56) 2013; 233
Yang, Zhang (CR31) 2011; 40
Butler, Mokrys (CR44) 1989; 5
Zhang, Zhang, Guo (CR15) 2017; 27
Cao, Yildirim, Durucan, Wolf, Cai, Agrawal, Korre (CR18) 2021; 288
Clarkson, Bustin (CR67) 1996; 75
Sher, Iqbal, Albazzaz, Ali, Mortari, Rashid (CR70) 2020; 282
Liu, Zhu, Cheng, Zhou, Cen (CR59) 2015; 146
Osman (CR9) 2020; 43
Lester, Kingman, Dodds (CR57) 2005; 84
W Cao (89193_CR18) 2021; 288
B Willman (89193_CR26) 1961; 13
AI Osman (89193_CR9) 2020; 43
Y Cai (89193_CR36) 2014; 32
F Sher (89193_CR71) 2020; 209
P Chen (89193_CR74) 2001; 26
L Ge (89193_CR50) 2013; 71
R Butler (89193_CR44) 1989; 5
R Sakurovs (89193_CR33) 2008; 73
R Cherbański (89193_CR51) 2011; 50
Y Yao (89193_CR14) 2009; 78
C Yin (89193_CR78) 2020; 150
M Mazzotti (89193_CR17) 2009; 47
T Teng (89193_CR40) 2016; 34
G Gürdal (89193_CR68) 2001; 48
A Alexeev (89193_CR16) 2007; 86
G Hu (89193_CR66) 2018; 150
X Tang (89193_CR35) 2015; 22
R Butler (89193_CR43) 1994; 33
Z Wang (89193_CR69) 2018; 222
H Li (89193_CR62) 2019; 189
C Li (89193_CR22) 2021; 35
L Zhang (89193_CR15) 2017; 27
X Yang (89193_CR31) 2011; 40
A Salmachi (89193_CR39) 2012; 26
M Al-Harahsheh (89193_CR72) 2004; 73
G Senthamaraikkannan (89193_CR12) 2016; 167
IU Hai (89193_CR4) 2019; 240
F Zhang (89193_CR30) 2012; 29
W Xia (89193_CR56) 2013; 233
AI Osman (89193_CR10) 2018; 3
89193_CR24
G Wei (89193_CR21) 2021; 284
S Razavi (89193_CR41) 2009; 16
Y Hong (89193_CR64) 2018; 227
Y Zhang (89193_CR6) 2019; 17
YuV Bykov (89193_CR73) 2001; 34
Y Cai (89193_CR37) 2014; 132
Q Liu (89193_CR46) 2016; 26
F Sher (89193_CR70) 2020; 282
E Lester (89193_CR57) 2005; 84
M Law (89193_CR27) 2016; 98
H Kumar (89193_CR58) 2011; 88
A Bera (89193_CR47) 2015; 151
W Wang (89193_CR60) 2018; 91
H Li (89193_CR65) 2020; 53
S Sehar (89193_CR1) 2020; 313
Y Zhang (89193_CR7) 2019; 17
Y Gao (89193_CR19) 2015; 26
J Guo (89193_CR23) 2014; 131
R Ranganayaki (89193_CR42) 1992; 57
Y Jiang (89193_CR38) 2010; 35
J Liu (89193_CR59) 2015; 146
M He (89193_CR79) 2010; 29
J Huang (89193_CR63) 2018; 177
M Tyulenev (89193_CR20) 2019; 24
X Yang (89193_CR32) 2013; 38
S Farag (89193_CR49) 2012; 36
A Tahmasebi (89193_CR55) 2014; 92
H Zhang (89193_CR76) 1993; 2
S Mozaffari (89193_CR29) 2013; 112
89193_CR45
H Wang (89193_CR61) 2017; 152
M Fayaz (89193_CR53) 2015; 49
C Clarkson (89193_CR67) 1996; 75
NK Al-Shara (89193_CR2) 2019; 44
O Al-Juboori (89193_CR5) 2020; 40
MHA Hassan (89193_CR8) 2020; 78
J Pan (89193_CR77) 2012; 102
D Zhao (89193_CR34) 2011; 34
T Moore (89193_CR11) 2012; 101
Z Pang (89193_CR28) 2015; 128
X Zhang (89193_CR75) 2005; 36
X Zhang (89193_CR25) 2016; 30
X Pi (89193_CR54) 2017; 31
NK Al-Shara (89193_CR3) 2020; 49
A Scott (89193_CR13) 2002; 50
M Bientinesi (89193_CR48) 2013; 107
H Mao (89193_CR52) 2015; 21
References_xml – volume: 30
  start-page: 8832
  year: 2016
  end-page: 8849
  ident: CR25
  article-title: Gas transportation and enhanced coalbed methane recovery processes in deep coal seams: A review
  publication-title: Energ. Fuel
  doi: 10.1021/acs.energyfuels.6b01720
– ident: CR45
– volume: 78
  start-page: 103313
  year: 2020
  ident: CR8
  article-title: Kinetic and thermodynamic evaluation of effective combined promoters for CO hydrate formation
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2020.103313
– volume: 167
  start-page: 188
  year: 2016
  end-page: 198
  ident: CR12
  article-title: Development of a multiscale microbial kinetics coupled gas transport model for the simulation of biogenic coalbed methane production
  publication-title: Fuel
  doi: 10.1016/j.fuel.2015.11.038
– volume: 2
  start-page: 23
  year: 1993
  end-page: 26
  ident: CR76
  article-title: Analysis on adsorption loop and pore structure of coal
  publication-title: Coal Eng.
– volume: 17
  start-page: 2018
  year: 2019
  end-page: 2110
  ident: CR6
  article-title: Effect of slot wall jet on combustion process in a 660 MW opposed wall fired pulverized coal boiler
  publication-title: Int. J. Chem. React. Eng.
– volume: 40
  start-page: 89
  year: 2011
  end-page: 94
  ident: CR31
  article-title: Numerical simulation on flow rules of coal-bed methane by thermal stimulation
  publication-title: J. China Univ. Min. Technol.
– volume: 31
  start-page: 9693
  year: 2017
  end-page: 9702
  ident: CR54
  article-title: Microwave irradiation induced high-efficiency regeneration for desulfurized activated coke: A comparative study with conventional thermal regeneration
  publication-title: Energy Fuel
  doi: 10.1021/acs.energyfuels.7b01260
– volume: 26
  start-page: 615
  year: 2016
  end-page: 621
  ident: CR46
  article-title: Water blocking effect caused by the use of hydraulic methods for permeability enhancement in coal seams and methods for its removal
  publication-title: Int. J. Min. Sci. Technol.
  doi: 10.1016/j.ijmst.2016.05.013
– volume: 29
  start-page: 505
  year: 2012
  end-page: 510
  ident: CR30
  article-title: Coupled thermal-hydrological-mechanical analysis of exploiting coal methane by heat injection
  publication-title: J. Min. Saf. Eng.
– volume: 26
  start-page: 552
  year: 2001
  end-page: 556
  ident: CR74
  article-title: The research on the adsorption of nitrogen in low temperature and micro-pore properties in coal
  publication-title: J. China Coal Soc.
– volume: 222
  start-page: 56
  year: 2018
  end-page: 63
  ident: CR69
  article-title: Microwave irradiation’s effect on promoting coalbed methane desorption and analysis of desorption kinetics
  publication-title: Fuel
  doi: 10.1016/j.fuel.2018.02.125
– volume: 35
  start-page: 434
  year: 2010
  end-page: 438
  ident: CR38
  article-title: The infiltration equation of coal bed under the cooperation of stress field, temperature field and sound field
  publication-title: J. China Coal Soc.
– volume: 32
  start-page: 601
  year: 2014
  end-page: 619
  ident: CR36
  article-title: Effects of pressure and temperature on gas diffusion and flow for primary and enhanced coalbed methane recovery
  publication-title: Energ. Explor. Exploit.
  doi: 10.1260/0144-5987.32.4.601
– volume: 128
  start-page: 184
  year: 2015
  end-page: 193
  ident: CR28
  article-title: A laboratory study of enhancing heavy oil recovery with steam flooding by adding nitrogen foams
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2015.02.020
– volume: 107
  start-page: 18
  year: 2013
  end-page: 30
  ident: CR48
  article-title: A radiofrequency/microwave heating method for thermal heavy oil recovery based on a novel tight-shell conceptual design
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2013.02.014
– volume: 288
  start-page: 119618
  year: 2021
  ident: CR18
  article-title: Fracture behaviour and seismic response of naturally fractured coal subjected to true triaxial stresses and hydraulic fracturing
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.119618
– volume: 48
  start-page: 133
  year: 2001
  end-page: 144
  ident: CR68
  article-title: Pore volume and surface area of the Carboniferous coals from the Zonguldak basin (NW Turkey) and their variations with rank and maceral composition
  publication-title: Int. J. Coal Geol.
  doi: 10.1016/S0166-5162(01)00051-9
– volume: 27
  start-page: 687
  year: 2017
  end-page: 692
  ident: CR15
  article-title: A case study of gas drainage to low permeability coal seam
  publication-title: Int. J. Mining Sci. Technol.
  doi: 10.1016/j.ijmst.2017.05.014
– volume: 86
  start-page: 2574
  year: 2007
  end-page: 2580
  ident: CR16
  article-title: Methane desorption from a coal-bed
  publication-title: Fuel
  doi: 10.1016/j.fuel.2007.02.005
– volume: 88
  start-page: 75
  year: 2011
  end-page: 82
  ident: CR58
  article-title: Inducing fractures and increasing cleat apertures in a bituminous coal under isotropic stress via application of microwave energy
  publication-title: Int. J. Coal Geol.
  doi: 10.1016/j.coal.2011.07.007
– volume: 101
  start-page: 36
  year: 2012
  end-page: 81
  ident: CR11
  article-title: Coalbed methane: A review
  publication-title: Int. J. Coal Geol.
  doi: 10.1016/j.coal.2012.05.011
– volume: 16
  start-page: 125
  year: 2009
  end-page: 139
  ident: CR41
  article-title: Application of cyclic steam stimulation by horizontal wells in iranian heavy oil reservoirs
  publication-title: Sci. Iran.
– volume: 240
  start-page: 118239
  year: 2019
  ident: CR4
  article-title: Experimental investigation of tar arresting techniques and their evaluation for product syngas cleaning from bubbling fluidized bed gasifier
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.118239
– volume: 146
  start-page: 41
  year: 2015
  end-page: 50
  ident: CR59
  article-title: Pore structure and fractal analysis of Ximeng lignite under microwave irradiation
  publication-title: Fuel
  doi: 10.1016/j.fuel.2015.01.019
– volume: 132
  start-page: 12
  year: 2014
  end-page: 19
  ident: CR37
  article-title: Partial coal pyrolysis and its implication to enhance coalbed methane recovery. Part I: An experimental investigation
  publication-title: Fuel
  doi: 10.1016/j.fuel.2014.04.084
– volume: 151
  start-page: 206
  year: 2015
  end-page: 226
  ident: CR47
  article-title: Status of electromagnetic heating for enhanced heavy oil/bitumen recovery and future prospects: A review
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.04.031
– volume: 282
  start-page: 118506
  year: 2020
  ident: CR70
  article-title: Development of biomass derived highly porous fast adsorbents for post-combustion CO capture
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.118506
– volume: 24
  start-page: 88
  year: 2019
  end-page: 97
  ident: CR20
  article-title: The influence of parameters of drilling and blasting operations on the performance of hydraulic backhoes at coal open pits in Kuzbass
  publication-title: Acta Montan. Slovaca
– volume: 189
  start-page: 49
  year: 2019
  end-page: 61
  ident: CR62
  article-title: A fully coupled electromagnetic, heat transfer and multiphase porous media model for microwave heating of coal
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2019.03.002
– volume: 26
  start-page: 193
  year: 2015
  end-page: 204
  ident: CR19
  article-title: Drilling large diameter cross-measure boreholes to improve gas drainage in highly gassy soft coal seams
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2015.05.035
– volume: 34
  start-page: 324
  year: 2011
  end-page: 331
  ident: CR34
  article-title: Experiments of methane adsorption on raw coal at 30–270 °C
  publication-title: Energy Source A.
  doi: 10.1080/15567036.2011.578112
– volume: 91
  start-page: 75
  year: 2018
  end-page: 86
  ident: CR60
  article-title: Pore structure development in Xilingol lignite under microwave irradiation
  publication-title: J. Energy Inst.
  doi: 10.1016/j.joei.2016.10.005
– volume: 284
  start-page: 119043
  year: 2021
  ident: CR21
  article-title: Liquid CO injection to enhance coalbed methane recovery: An experiment and in-situ application test
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.119043
– volume: 102
  start-page: 760
  year: 2012
  end-page: 765
  ident: CR77
  article-title: Coalbed methane sorption related to coal deformation structures at different temperatures and pressures
  publication-title: Fuel
  doi: 10.1016/j.fuel.2012.07.023
– volume: 26
  start-page: 5048
  year: 2012
  end-page: 5059
  ident: CR39
  article-title: Feasibility study of thermally enhanced gas recovery of coal seam gas reservoirs using geothermal resources
  publication-title: Energy Fuel
  doi: 10.1021/ef300598e
– volume: 73
  start-page: 189
  year: 2004
  end-page: 203
  ident: CR72
  article-title: Microwave-assisted leaching-a review
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2003.10.006
– volume: 57
  start-page: 488
  year: 1992
  end-page: 494
  ident: CR42
  article-title: Formation resistivity variation due to steam flooding: A log study
  publication-title: Geophysics
  doi: 10.1190/1.1443264
– volume: 44
  start-page: 27224
  year: 2019
  end-page: 27236
  ident: CR2
  article-title: Electrochemical investigation of novel reference electrode Ni/Ni(OH) in comparison with silver and platinum inert quasi-reference electrodes for electrolysis in eutectic molten hydroxide
  publication-title: Int. J. Hydrogen Energ.
  doi: 10.1016/j.ijhydene.2019.08.248
– volume: 3
  start-page: 1545
  year: 2018
  end-page: 1550
  ident: CR10
  article-title: Characterisation of robust combustion catalyst from aluminium foil waste
  publication-title: Chem. Select
– volume: 233
  start-page: 186
  year: 2013
  end-page: 189
  ident: CR56
  article-title: Effect of microwave pretreatment on oxidized coal flotation
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2012.09.010
– volume: 34
  start-page: 55
  year: 2001
  end-page: 75
  ident: CR73
  article-title: High-temperature microwave processing of materials
  publication-title: J. Phys. D.
  doi: 10.1088/0022-3727/34/13/201
– volume: 50
  start-page: 8632
  year: 2011
  end-page: 8644
  ident: CR51
  article-title: Microwave swing regeneration vs temperature swing regeneration—comparison of desorption kinetics
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie102490v
– volume: 227
  start-page: 434
  year: 2018
  end-page: 447
  ident: CR64
  article-title: Microwave irradiation on pore morphology of coal powder
  publication-title: Fuel
  doi: 10.1016/j.fuel.2018.04.066
– volume: 75
  start-page: 1483
  year: 1996
  end-page: 1498
  ident: CR67
  article-title: Variation in micropore capacity and size distribution with composition in bituminous coal of the Western Canadian Sedimentary Basin: Implications for coalbed methane potential
  publication-title: Fuel
  doi: 10.1016/0016-2361(96)00142-1
– volume: 49
  start-page: 33
  year: 2020
  end-page: 41
  ident: CR3
  article-title: Electrochemical study of different membrane materials for the fabrication of stable, reproducible and reusable reference electrode
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.01.008
– volume: 17
  start-page: 2019
  year: 2019
  end-page: 2064
  ident: CR7
  article-title: Simulation of particle mixing and separation in multi-component fluidized bed using Eulerian-Eulerian method: A review
  publication-title: Int. J. Chem. React. Eng.
– volume: 112
  start-page: 185
  year: 2013
  end-page: 192
  ident: CR29
  article-title: Numerical modeling of steam injection in heavy oil reservoirs
  publication-title: Fuel
  doi: 10.1016/j.fuel.2013.04.084
– volume: 33
  start-page: 44
  year: 1994
  end-page: 50
  ident: CR43
  article-title: Steam-assisted gravity drainage: Concept, development, performance and future
  publication-title: J. Can. Pet. Technol.
  doi: 10.2118/94-02-05
– volume: 21
  start-page: 516
  year: 2015
  end-page: 525
  ident: CR52
  article-title: Constant power and constant temperature microwave regeneration of toluene and acetone loaded on microporous activated carbon from agricultural residue
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2014.03.014
– volume: 49
  start-page: 4536
  year: 2015
  end-page: 4542
  ident: CR53
  article-title: Using microwave heating to improve the desorption efficiency of high molecular weight VOC from beaded activated carbon
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es505953c
– volume: 152
  start-page: 495
  year: 2017
  end-page: 504
  ident: CR61
  article-title: Numerical modelling of microwave heating treatment for tight gas sand reservoirs
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2017.01.055
– volume: 36
  start-page: 360
  year: 2012
  end-page: 369
  ident: CR49
  article-title: Temperature profile prediction within selected materials heated by microwaves at 2.45 GHz
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2011.10.049
– volume: 53
  start-page: 5631
  year: 2020
  end-page: 5640
  ident: CR65
  article-title: Experimental study on coal damage subjected to microwave heating
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/s00603-020-02230-z
– volume: 29
  start-page: 865
  year: 2010
  end-page: 872
  ident: CR79
  article-title: Desorption characteristics of adsorbed gas in coal samples under coupling temperature and uniaxial compression
  publication-title: China J. Rock. Mech. Eng.
– volume: 13
  start-page: 681
  year: 1961
  end-page: 690
  ident: CR26
  article-title: Laboratory studies of oil recovery by steam injection
  publication-title: J. Petroleum Technol.
  doi: 10.2118/1537-G-PA
– volume: 131
  start-page: 392
  year: 2014
  end-page: 399
  ident: CR23
  article-title: Accelerating methane desorption in lump anthracite modified by electrochemical treatment
  publication-title: Int. J. Coal Geol.
  doi: 10.1016/j.coal.2014.06.011
– volume: 150
  start-page: 104897
  year: 2020
  ident: CR78
  article-title: Strength degradation mechanism of iron coke prepared by mixed coal and Fe O
  publication-title: J. Anal. Appl. Pyrol.
  doi: 10.1016/j.jaap.2020.104897
– volume: 150
  start-page: 118
  year: 2018
  end-page: 125
  ident: CR66
  article-title: Experimental investigation on variation of physical properties of coal particles subjected to microwave irradiation
  publication-title: J. Appl. Geophys.
  doi: 10.1016/j.jappgeo.2017.12.011
– volume: 209
  start-page: 118444
  year: 2020
  ident: CR71
  article-title: Torrefied biomass fuels as a renewable alternative to coal in co-firing for power generation
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118444
– volume: 92
  start-page: 54
  year: 2014
  end-page: 65
  ident: CR55
  article-title: A kinetic study of microwave and fluidized-bed drying of a Chinese lignite
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2013.06.013
– volume: 73
  start-page: 250
  year: 2008
  end-page: 258
  ident: CR33
  article-title: Temperature dependence of sorption of gases by coals and charcoals
  publication-title: Int. J. Coal Geol.
  doi: 10.1016/j.coal.2007.05.001
– volume: 313
  start-page: 113494
  year: 2020
  ident: CR1
  article-title: Thermodynamic and kinetic study of synthesised graphene oxide-CuO nanocomposites: A way forward to fuel additive and photocatalytic potentials
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2020.113494
– volume: 47
  start-page: 619
  year: 2009
  end-page: 627
  ident: CR17
  article-title: Enhanced coalbed methane recovery
  publication-title: J. Supercrit. Fluid
  doi: 10.1016/j.supflu.2008.08.013
– volume: 40
  start-page: 101193
  year: 2020
  ident: CR5
  article-title: The effect of variable operating parameters for hydrocarbon fuel formation from CO by molten salts electrolysis
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2020.101193
– volume: 43
  start-page: 641
  year: 2020
  end-page: 648
  ident: CR9
  article-title: Catalytic hydrogen production from methane partial oxidation: Mechanism and kinetic study
  publication-title: Chem. Eng. Technol.
  doi: 10.1002/ceat.201900339
– volume: 22
  start-page: 609
  year: 2015
  end-page: 617
  ident: CR35
  article-title: Temperature-dependent diffusion process of methane through dry crushed coal
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2014.12.022
– volume: 84
  start-page: 423
  year: 2005
  end-page: 427
  ident: CR57
  article-title: Increased coal grindability as a result of microwave pretreatment at economic energy inputs
  publication-title: Fuel
  doi: 10.1016/j.fuel.2004.09.019
– volume: 36
  start-page: 4
  year: 2005
  end-page: 7
  ident: CR75
  article-title: Influence of microspore structure of coal on coal seam permeability
  publication-title: Saf. Coal Mines
– volume: 177
  start-page: 237
  year: 2018
  end-page: 245
  ident: CR63
  article-title: A coupled electromagnetic irradiation, heat and mass transfer model for microwave heating and its numerical simulation on coal
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2018.04.034
– volume: 50
  start-page: 363
  year: 2002
  end-page: 387
  ident: CR13
  article-title: Hydrogeologic factors affecting gas content distribution in coal beds
  publication-title: Int. J. Coal Geol.
  doi: 10.1016/S0166-5162(02)00135-0
– volume: 38
  start-page: 1044
  year: 2013
  end-page: 1049
  ident: CR32
  article-title: Numerical simulation of the coupled thermal-fluid-solid mathematical models during extracting methane in low-permeability coal bed by heat injection
  publication-title: J. China Coal Soc.
– volume: 98
  start-page: 702
  year: 2016
  end-page: 726
  ident: CR27
  article-title: Modelling microwave heating of discrete samples of oil palm kernels
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.01.009
– volume: 34
  start-page: 1174
  year: 2016
  end-page: 1190
  ident: CR40
  article-title: Complex thermal coal-gas interactions in heat injection enhanced CBM recovery
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2016.07.074
– volume: 78
  start-page: 1
  year: 2009
  end-page: 15
  ident: CR14
  article-title: Preliminary evaluation of the coalbed methane production potential and its geological controls in the Weibei Coalfield, Southeastern Ordos Basin, China
  publication-title: Int. J. Coal Geol.
  doi: 10.1016/j.coal.2008.09.011
– ident: CR24
– volume: 71
  start-page: 84
  year: 2013
  end-page: 91
  ident: CR50
  article-title: Effects of microwave irradiation treatment on physicochemical characteristics of Chinese low-rank coals
  publication-title: Energ. Convers. Manag.
  doi: 10.1016/j.enconman.2013.03.021
– volume: 5
  start-page: 17
  year: 1989
  end-page: 32
  ident: CR44
  article-title: Solvent analog model of steam assisted gravity drainage
  publication-title: AOSTRA J. Res.
– volume: 35
  start-page: 226
  year: 2021
  end-page: 236
  ident: CR22
  article-title: Changes in pore structure and permeability of middle-high rank coal subjected to liquid nitrogen freeze-thaw
  publication-title: Energ. Fuel.
  doi: 10.1021/acs.energyfuels.0c02294
– volume: 131
  start-page: 392
  year: 2014
  ident: 89193_CR23
  publication-title: Int. J. Coal Geol.
  doi: 10.1016/j.coal.2014.06.011
– volume: 57
  start-page: 488
  year: 1992
  ident: 89193_CR42
  publication-title: Geophysics
  doi: 10.1190/1.1443264
– volume: 44
  start-page: 27224
  year: 2019
  ident: 89193_CR2
  publication-title: Int. J. Hydrogen Energ.
  doi: 10.1016/j.ijhydene.2019.08.248
– volume: 167
  start-page: 188
  year: 2016
  ident: 89193_CR12
  publication-title: Fuel
  doi: 10.1016/j.fuel.2015.11.038
– volume: 84
  start-page: 423
  year: 2005
  ident: 89193_CR57
  publication-title: Fuel
  doi: 10.1016/j.fuel.2004.09.019
– volume: 36
  start-page: 4
  year: 2005
  ident: 89193_CR75
  publication-title: Saf. Coal Mines
– ident: 89193_CR24
  doi: 10.2172/1054498
– ident: 89193_CR45
  doi: 10.2118/62550-MS
– volume: 78
  start-page: 1
  year: 2009
  ident: 89193_CR14
  publication-title: Int. J. Coal Geol.
  doi: 10.1016/j.coal.2008.09.011
– volume: 49
  start-page: 33
  year: 2020
  ident: 89193_CR3
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.01.008
– volume: 101
  start-page: 36
  year: 2012
  ident: 89193_CR11
  publication-title: Int. J. Coal Geol.
  doi: 10.1016/j.coal.2012.05.011
– volume: 209
  start-page: 118444
  year: 2020
  ident: 89193_CR71
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118444
– volume: 26
  start-page: 552
  year: 2001
  ident: 89193_CR74
  publication-title: J. China Coal Soc.
– volume: 26
  start-page: 5048
  year: 2012
  ident: 89193_CR39
  publication-title: Energy Fuel
  doi: 10.1021/ef300598e
– volume: 36
  start-page: 360
  year: 2012
  ident: 89193_CR49
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2011.10.049
– volume: 35
  start-page: 226
  year: 2021
  ident: 89193_CR22
  publication-title: Energ. Fuel.
  doi: 10.1021/acs.energyfuels.0c02294
– volume: 34
  start-page: 1174
  year: 2016
  ident: 89193_CR40
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2016.07.074
– volume: 132
  start-page: 12
  year: 2014
  ident: 89193_CR37
  publication-title: Fuel
  doi: 10.1016/j.fuel.2014.04.084
– volume: 30
  start-page: 8832
  year: 2016
  ident: 89193_CR25
  publication-title: Energ. Fuel
  doi: 10.1021/acs.energyfuels.6b01720
– volume: 26
  start-page: 193
  year: 2015
  ident: 89193_CR19
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2015.05.035
– volume: 24
  start-page: 88
  year: 2019
  ident: 89193_CR20
  publication-title: Acta Montan. Slovaca
– volume: 40
  start-page: 101193
  year: 2020
  ident: 89193_CR5
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2020.101193
– volume: 128
  start-page: 184
  year: 2015
  ident: 89193_CR28
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2015.02.020
– volume: 26
  start-page: 615
  year: 2016
  ident: 89193_CR46
  publication-title: Int. J. Min. Sci. Technol.
  doi: 10.1016/j.ijmst.2016.05.013
– volume: 152
  start-page: 495
  year: 2017
  ident: 89193_CR61
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2017.01.055
– volume: 86
  start-page: 2574
  year: 2007
  ident: 89193_CR16
  publication-title: Fuel
  doi: 10.1016/j.fuel.2007.02.005
– volume: 71
  start-page: 84
  year: 2013
  ident: 89193_CR50
  publication-title: Energ. Convers. Manag.
  doi: 10.1016/j.enconman.2013.03.021
– volume: 73
  start-page: 250
  year: 2008
  ident: 89193_CR33
  publication-title: Int. J. Coal Geol.
  doi: 10.1016/j.coal.2007.05.001
– volume: 50
  start-page: 8632
  year: 2011
  ident: 89193_CR51
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie102490v
– volume: 88
  start-page: 75
  year: 2011
  ident: 89193_CR58
  publication-title: Int. J. Coal Geol.
  doi: 10.1016/j.coal.2011.07.007
– volume: 78
  start-page: 103313
  year: 2020
  ident: 89193_CR8
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2020.103313
– volume: 227
  start-page: 434
  year: 2018
  ident: 89193_CR64
  publication-title: Fuel
  doi: 10.1016/j.fuel.2018.04.066
– volume: 75
  start-page: 1483
  year: 1996
  ident: 89193_CR67
  publication-title: Fuel
  doi: 10.1016/0016-2361(96)00142-1
– volume: 40
  start-page: 89
  year: 2011
  ident: 89193_CR31
  publication-title: J. China Univ. Min. Technol.
– volume: 288
  start-page: 119618
  year: 2021
  ident: 89193_CR18
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.119618
– volume: 189
  start-page: 49
  year: 2019
  ident: 89193_CR62
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2019.03.002
– volume: 150
  start-page: 104897
  year: 2020
  ident: 89193_CR78
  publication-title: J. Anal. Appl. Pyrol.
  doi: 10.1016/j.jaap.2020.104897
– volume: 146
  start-page: 41
  year: 2015
  ident: 89193_CR59
  publication-title: Fuel
  doi: 10.1016/j.fuel.2015.01.019
– volume: 177
  start-page: 237
  year: 2018
  ident: 89193_CR63
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2018.04.034
– volume: 3
  start-page: 1545
  year: 2018
  ident: 89193_CR10
  publication-title: Chem. Select
– volume: 240
  start-page: 118239
  year: 2019
  ident: 89193_CR4
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.118239
– volume: 33
  start-page: 44
  year: 1994
  ident: 89193_CR43
  publication-title: J. Can. Pet. Technol.
  doi: 10.2118/94-02-05
– volume: 17
  start-page: 2019
  year: 2019
  ident: 89193_CR7
  publication-title: Int. J. Chem. React. Eng.
– volume: 284
  start-page: 119043
  year: 2021
  ident: 89193_CR21
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.119043
– volume: 50
  start-page: 363
  year: 2002
  ident: 89193_CR13
  publication-title: Int. J. Coal Geol.
  doi: 10.1016/S0166-5162(02)00135-0
– volume: 13
  start-page: 681
  year: 1961
  ident: 89193_CR26
  publication-title: J. Petroleum Technol.
  doi: 10.2118/1537-G-PA
– volume: 43
  start-page: 641
  year: 2020
  ident: 89193_CR9
  publication-title: Chem. Eng. Technol.
  doi: 10.1002/ceat.201900339
– volume: 313
  start-page: 113494
  year: 2020
  ident: 89193_CR1
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2020.113494
– volume: 21
  start-page: 516
  year: 2015
  ident: 89193_CR52
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2014.03.014
– volume: 31
  start-page: 9693
  year: 2017
  ident: 89193_CR54
  publication-title: Energy Fuel
  doi: 10.1021/acs.energyfuels.7b01260
– volume: 29
  start-page: 865
  year: 2010
  ident: 89193_CR79
  publication-title: China J. Rock. Mech. Eng.
– volume: 34
  start-page: 55
  year: 2001
  ident: 89193_CR73
  publication-title: J. Phys. D.
  doi: 10.1088/0022-3727/34/13/201
– volume: 29
  start-page: 505
  year: 2012
  ident: 89193_CR30
  publication-title: J. Min. Saf. Eng.
– volume: 5
  start-page: 17
  year: 1989
  ident: 89193_CR44
  publication-title: AOSTRA J. Res.
– volume: 38
  start-page: 1044
  year: 2013
  ident: 89193_CR32
  publication-title: J. China Coal Soc.
– volume: 53
  start-page: 5631
  year: 2020
  ident: 89193_CR65
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/s00603-020-02230-z
– volume: 98
  start-page: 702
  year: 2016
  ident: 89193_CR27
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.01.009
– volume: 32
  start-page: 601
  year: 2014
  ident: 89193_CR36
  publication-title: Energ. Explor. Exploit.
  doi: 10.1260/0144-5987.32.4.601
– volume: 112
  start-page: 185
  year: 2013
  ident: 89193_CR29
  publication-title: Fuel
  doi: 10.1016/j.fuel.2013.04.084
– volume: 17
  start-page: 2018
  year: 2019
  ident: 89193_CR6
  publication-title: Int. J. Chem. React. Eng.
– volume: 73
  start-page: 189
  year: 2004
  ident: 89193_CR72
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2003.10.006
– volume: 92
  start-page: 54
  year: 2014
  ident: 89193_CR55
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2013.06.013
– volume: 150
  start-page: 118
  year: 2018
  ident: 89193_CR66
  publication-title: J. Appl. Geophys.
  doi: 10.1016/j.jappgeo.2017.12.011
– volume: 34
  start-page: 324
  year: 2011
  ident: 89193_CR34
  publication-title: Energy Source A.
  doi: 10.1080/15567036.2011.578112
– volume: 91
  start-page: 75
  year: 2018
  ident: 89193_CR60
  publication-title: J. Energy Inst.
  doi: 10.1016/j.joei.2016.10.005
– volume: 102
  start-page: 760
  year: 2012
  ident: 89193_CR77
  publication-title: Fuel
  doi: 10.1016/j.fuel.2012.07.023
– volume: 27
  start-page: 687
  year: 2017
  ident: 89193_CR15
  publication-title: Int. J. Mining Sci. Technol.
  doi: 10.1016/j.ijmst.2017.05.014
– volume: 49
  start-page: 4536
  year: 2015
  ident: 89193_CR53
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es505953c
– volume: 282
  start-page: 118506
  year: 2020
  ident: 89193_CR70
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.118506
– volume: 47
  start-page: 619
  year: 2009
  ident: 89193_CR17
  publication-title: J. Supercrit. Fluid
  doi: 10.1016/j.supflu.2008.08.013
– volume: 222
  start-page: 56
  year: 2018
  ident: 89193_CR69
  publication-title: Fuel
  doi: 10.1016/j.fuel.2018.02.125
– volume: 48
  start-page: 133
  year: 2001
  ident: 89193_CR68
  publication-title: Int. J. Coal Geol.
  doi: 10.1016/S0166-5162(01)00051-9
– volume: 22
  start-page: 609
  year: 2015
  ident: 89193_CR35
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2014.12.022
– volume: 107
  start-page: 18
  year: 2013
  ident: 89193_CR48
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2013.02.014
– volume: 16
  start-page: 125
  year: 2009
  ident: 89193_CR41
  publication-title: Sci. Iran.
– volume: 2
  start-page: 23
  year: 1993
  ident: 89193_CR76
  publication-title: Coal Eng.
– volume: 35
  start-page: 434
  year: 2010
  ident: 89193_CR38
  publication-title: J. China Coal Soc.
– volume: 151
  start-page: 206
  year: 2015
  ident: 89193_CR47
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.04.031
– volume: 233
  start-page: 186
  year: 2013
  ident: 89193_CR56
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2012.09.010
SSID ssj0000529419
Score 2.405569
Snippet As a clean energy resource, coalbed methane (CBM) has drawn worldwide attention. However, the CBM reservoir has strong adsorption capacity and low permeability...
Abstract As a clean energy resource, coalbed methane (CBM) has drawn worldwide attention. However, the CBM reservoir has strong adsorption capacity and low...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9618
SubjectTerms 639/4077/4082/4059
639/4077/4082/4090
Adsorption
Clean energy
Coalbed methane
Desorption
Energy sources
Heating
Humanities and Social Sciences
Injection
Membrane permeability
Methane
Microwave heating
multidisciplinary
Permeability
Science
Science (multidisciplinary)
Thermal energy
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxUxEA5SKPgitt7WVongm4bu5rp5VLEUQfHBQt9CNhcs1N3Sc2rpv3cm2XPa4_XFx91JdkNmkvmSfJkh5KVvh2Cy75m2WTMJmJp5EzsGrsHybHMYEm4NfPykj47lhxN1civVF3LCanjg2nEHqeXJc9sGD66_j9ybLJJIwQaAOqHkF-bg824tpmpUb25lZ-dbMq3oDxbgqfA2Ge9YbwG1MLXhiUrA_t-hzF_Jkj-dmBZHdHif3JsRJH1TW75D7qRxl2zXnJLXD0j6XAl200hnrgadMv2GvLsr_z1RnHzhuxTkYfJnQ4oUs0j7MdGYFtNFmULoippOcZ8WnkYMC3t6U_0hOT58_-XdEZtzKbCgjFkyK6Vqs4zRaxOCsG3kuu8tLEhEGqTqohl8DDYCHhPIV8sgAqTSqtYn22YtHpGtcRrTE0KT0TqAjzPBWilC9B5gRcw--kHDz2RDulW_ujAHGsd8F2euHHiL3lVdONCFK7pwqiGv1nXOa5iNv5Z-i-pal8QQ2eUFGI6bDcf9y3Aasr9StpvH7cJxhXhJg8NuyIu1GEYcHqOAJqbLWkZz3AlqyONqG-uWCIF03Q4kZsNqNpq6KRlPv5ao3n1Xjqkb8nplXzfN-nNXPP0fXbFH7nIcGMjjVPtka3lxmZ4B1loOz8uw-gHw2yVq
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkLKu9AQUbiBlYTO7HjU9UiqgoJxIFKe7McP6BSScruthX_nhnHyWp59Lg7zq43M575dubLDCFvbNk5FW3LpI6S1YCpmVW-YhAaNI86ui5gauDTZ3lyWn9cNIuccFtlWuXkE5Oj9oPDHPk-bzCSSXClBxc_GU6NwupqHqFxm9zB1mVI6VILNedYsIpVVzo_K1OKdn8F8QqfKeMVazVgF9ZsxaPUtv9fWPNvyuQfddMUjo53yf2MI-nhqPgH5FboH5K742TJX49I-DLS7IaeZsYGHSL9gey7a3sVKLpg-FwKcjfY8y54irOkbR-oD6thmRwJnQjqFLO18KrH5rBnm8sfk9PjD1_fn7A8UYG5Rqk103XdlLH23krlnNCl57JtNfwtEaGrm8qrznqnPaAygay1CCLAK2VT2qDLKMUTstMPfXhGaFBSOoh0ymldC-etBXDho_W2k_BldUGq6b4al9uN49SLc5PK3qI1oy4M6MIkXZimIG_nay7GZhs3rj5Cdc0rsVF2emNYfjP53JlQ8mC5Lp0F5Nh6blUUQQSnHSBlV_GC7E3KNvn0rszG1gryehbDucNiCmhiuBzXSI75oII8HW1j3okQSNqtQKK2rGZrq9uS_ux76u3dVqlYXZB3k31ttvX_W_H85l_xgtzjaPLI02z2yM56eRleApZad6_SgfkNohwclQ
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9UwEB7WFcEX8W51lQi-abFNmqR51IPLIig-uLBvIc1FF3ZbOees4r93Jr0sR1fBx3aSNnQmma8zXyYAL1zVeZ1cWyqTVNkgpi6dDnWJrsHwZJLvIoUGPnxUR8fN-xN5sgd83guTSfu5pGVepmd22OsNOhraDMbrsjUIOkp5Da5T6Xay6pVaLXEVylw1tZn2x1SivaLrjg_Kpfqvwpd_0iR_y5VmF3R4G25N2JG9GUd7B_ZifxdujKdJ_rwH8dNIrRt6NrE02JDYOTHufrjvkdGyi89lKPeDO-tiYHR-tOsjC3EzrPPiwWZSOqMILV71VBD29LL7fTg-fPd5dVROpyiUXmq9LU3TyCo1ITilvRemCly1rcFfERG7RtZBdy54ExCJCWKqJRQhRqlk5aKpkhIPYL8f-vgIWNRKefRu2hvTCB-cQ0ARkguuU_iypoB6_q7WTyXG6aSLM5tT3aK1oy4s6sJmXVhZwMulz7exwMY_W78ldS0tqTh2vjGsv9jJWGyseHTcVN4hWmwDdzqJKKI3HtGxr3kBB7Oy7TRjN5ZLQkoKXXUBzxcxzjVKoKAmhouxjeIUAyrg4Wgby0iEIKJujRK9YzU7Q92V9Kdfcz3vts4J6gJezfZ1Oay_f4rH_9f8CdzkNAWIqykPYH-7vohPEU9tu2d5Av0CIvIafw
  priority: 102
  providerName: Springer Nature
Title Promotion effects of microwave heating on coalbed methane desorption compared with conductive heating
URI https://link.springer.com/article/10.1038/s41598-021-89193-5
https://www.ncbi.nlm.nih.gov/pubmed/33953313
https://www.proquest.com/docview/2522236718
https://www.proquest.com/docview/2522620933
https://pubmed.ncbi.nlm.nih.gov/PMC8100304
https://doaj.org/article/e02ea290ca3248d2a7f3e3ec9c800c12
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_tQ0i8IL4JbJWReINAYid2_DBNXbVpqrRpAir1LXL8MSaVBNoO2H-_s5N0KhQknqL47MTy3fl-ts93AG9UUmnhVBFz6XicIaaOlTBpjKZBUiedrqzfGjg756eTbDzNp1vQpzvqBnCxcWnn80lN5rP3v77fHKLCH7RXxosPCzRC_qIYTeNCIiCJ823YRcskvKKedXC_jfVNZZbK7u7M5qZr9imE8d-EPf90ofztHDWYp5OH8KDDlWTYCsIj2LL1Y7jXZpq8eQL2onW7a2rSeXCQxpGv3hvvp_phiZ-S8bsE6bpRs8oa4nNLq9oSYxfNPEwspHdYJ373Ft9qHyz26q75U5icHH8encZdhoVY50IsY5lleeIyYxQXWjOZGMqLQuIyhdkqy1MjKmW0NIjSmPdic0hC_JLkibIycZw9g526qe0LIFZwrtHyCS1lxrRRCsGGccqoiuPPsgjSflxL3YUf91kwZmU4BmdF2fKiRF6UgRdlHsHbVZtvbfCNf9Y-8uxa1fSBs0NBM78sOz0sbUKtojLRCpFkYagSjllmtdSInHVKI9jrmV32wljS3KMojmY8gtcrMuqhP1xBTjTXbR1O_f5QBM9b2Vj1hDHvxJsiRaxJzVpX1yn11ZcQ67tIw-F1BO96-brr1t-H4uX_VX8F96lXAe_Hme_BznJ-bfcRay2rAWyLqRjA7nA4_jTG59Hx-cVHLB3x0SDsXwyCit0CS3Up_A
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9QwDLfGTQheEN8UBgQJnqBam7Rp84AQg003tp0mtEl7C2mSwqTRjrsb0_4p_kbsfp2Oj73t8c5pLxc79i-2YwO8NFFhs9LkoVSlDBPE1KHJXByiaVC8VKUtPLkG9iZyfJh8OkqPVuBXfxeG0ip7ndgoaldb8pGv85QsmURV-u70R0hdoyi62rfQaMVix1-c45Ft9nb7I_L3FedbmwcfxmHXVSC0aZbNQ5UkaVQmzhmZWYtHfsdlniuE5sIXSRq7rDDOKofIRFDmVokktNlRGhmvolIKfO81WE0EHmVGsLqxOdn_PHh1KG6WxKq7nROJfH2GFpJusfE4zBWipTBdsoBNo4B_odu_kzT_iNQ2BnDrNtzqkCt734raHVjx1V243vayvLgHfr9N7Ksr1uWIsLpk3ynf79z89IyUPr6XId3W5qTwjlH3alN55vysnjaqi_Up8Yz8w_iponK0x4vH78Phlaz2AxhVdeUfAfOZlBZta2aVSoR1xiCccaVxppD4Y0kAcb-u2nYFzqnPxoluAu0i1y0vNPJCN7zQaQCvh2dO2_Iel47eIHYNI6k0d_NFPf2qu52ufcS94SqyBrFq7rjJSuGFt8oiNrcxD2CtZ7bu9MVML6Q7gBcDGXc6hW-QE_VZO0Zy8kAF8LCVjWEmQlCacIyUbElqlqa6TKmOvzXVxPO4CY8H8KaXr8W0_r8Ujy__F8_hxvhgb1fvbk92nsBNTuJPWaLpGozm0zP_FJHcvHjWbR8GX656x_4G9bdYzA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEagXxJtAASPBCaJN7MSODwgBZdVSqHqg0t6M4wdUapOyu6XqX-PXMeMku1oevfWYtZN4Pc_MfJ4h5LnJaiuDqVKhgkgL8KlTI12egmlQLKhga4-hgc97Yvug-DgpJ2vk13AWBmGVg06Mitq1FmPkI1aiJROgSkehh0Xsb43fnPxIsYMUZlqHdhodi-z68zP4fJu93tkCWr9gbPzhy_vttO8wkNpSynmqiqLMQuGcEdJa-Px3TFSVAjed-7oocydr46xy4KVwRHEFGAL7nZWZ8SoLgsNzr5Crkpc5ypicyEV8BzNoRa76czoZr0YzsJV4no3laaXAb0rLFVsYWwb8y8_9G675R842msLxTXKj92Hp247pbpE139wm17qulud3iN_vIH5tQ3u0CG0DPUbk35n56Smqf3guhXHbmqPaO4p9rE3jqfOzdhqVGB3A8RQjxXDVYGHaw-Xtd8nBpez1PbLetI1_QKiXQliwstIqVXDrjAHHxgXjTC3gZUVC8mFfte1LnWPHjSMdU-680h0tNNBCR1roMiEvF_ecdIU-Lpz9Dsm1mIlFuuMP7fSb7mVe-4x5w1RmDXitlWNGBu65t8qCl25zlpDNgdi61xwzveTzhDxbDIPMYyIHKNGednMEw1hUQu53vLFYCecIGM5hRK5wzcpSV0eaw--xrniVx0R5Ql4N_LVc1v-34uHF_-IpuQ5yqj_t7O0-IhsMuR_houUmWZ9PT_1jcOnm9ZMoO5R8vWxh_Q1KDFuc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Promotion+effects+of+microwave+heating+on+coalbed+methane+desorption+compared+with+conductive+heating&rft.jtitle=Scientific+reports&rft.au=Wang%2C+Zhijun&rft.au=Wang%2C+Xiaojuan&rft.date=2021-05-05&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-021-89193-5&rft.externalDocID=10_1038_s41598_021_89193_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon