Promotion effects of microwave heating on coalbed methane desorption compared with conductive heating

As a clean energy resource, coalbed methane (CBM) has drawn worldwide attention. However, the CBM reservoir has strong adsorption capacity and low permeability and thus requires stimulation. As a means to stimulate coalbed methane recovery, thermal injection faces geological and economic challenges...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 11; no. 1; p. 9618
Main Authors Wang, Zhijun, Wang, Xiaojuan
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 05.05.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:As a clean energy resource, coalbed methane (CBM) has drawn worldwide attention. However, the CBM reservoir has strong adsorption capacity and low permeability and thus requires stimulation. As a means to stimulate coalbed methane recovery, thermal injection faces geological and economic challenges because it uses conventional conductive heating (CH) to transfer heat. Realized by the conversion of the electromagnetic energy into the thermal energy, microwave heating (MH) may be a sound stimulation method. Although previous research suggested that MH had potential as a stimulation method for coalbed methane recovery, it is not clear if MH is superior to CH for enhancing coalbed methane recovery. This paper compares the effect of MH and CH on methane desorption from coal using purpose-built experimental equipment. To compare the MH and CH experimental results, the desorption temperature for each CH desorption test was set to the maximum temperature reached in the correlative MH desorption test. The results show that although the cumulative desorbed volume (CDV) of methane under MH was less than that desorbed by CH in the initial desorption stage, the final total CDV under MH for the three different power settings was ~ 12% to ~ 21% more than that desorbed by CH at the same temperatures. CH and MH both change the sample’s microstructure but MH enlarges the pores, decreases methane adsorption, promotes methane diffusion, and improves permeability more effectively than CH. Rapid temperature rise and the changes in the coal’s microstructure caused by MH were the main reasons for its superior performance. These findings may provide reference for selecting the most appropriate type of heating for thermal injection assisted coalbed methane recovery.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-89193-5