Composition of receptor tyrosine kinase-mediated lipid micro-domains controlled by adaptor protein interaction
Receptor tyrosine kinases (RTKs) are highly regulated, single pass transmembrane proteins, fundamental to cellular function and survival. Aberrancies in regulation lead to corruption of signal transduction and a range of pathological outcomes. Although control mechanisms associated with the receptor...
Saved in:
Published in | Scientific reports Vol. 11; no. 1; p. 6160 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
17.03.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Receptor tyrosine kinases (RTKs) are highly regulated, single pass transmembrane proteins, fundamental to cellular function and survival. Aberrancies in regulation lead to corruption of signal transduction and a range of pathological outcomes. Although control mechanisms associated with the receptors and their ligands are well understood, little is known with respect to the impact of lipid/lipid and lipid/protein interactions in the proximal plasma membrane environment. Given that the transmembrane regions of RTKs change in response to extracellular ligand binding, the lipid interactions have important consequences in influencing signal transduction. Fibroblast growth factor receptor 2 (FGFR2) is a highly regulated RTK, including under basal conditions. Binding of the adaptor protein, growth factor receptor-bound protein 2 (GRB2) to FGFR2 prevents full activation and recruitment of downstream signalling effector proteins in the absence of extracellular stimulation. Here we demonstrate that the FGFR2-GRB2 complex is sustained in a defined lipid environment. Dissociation of GRB2 from this complex due to ligand binding, or reduced GRB2 expression, facilitates the dispersion of FGFR2 into detergent-resistant membrane (DRM) micro-domains. This modification of the plasma membrane proximal to FGFR2 provides a further regulatory checkpoint which controls receptor degradation, recycling and recruitment of intracellular signalling proteins. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-021-85578-8 |