Tlr1612 is the major repressor of cell aggregation in the light-color-dependent c-di-GMP signaling network of Thermosynechococcus vulcanus

Cyclic diguanylate (c-di-GMP) is a bacterial second messenger involved in sessile/motile lifestyle transitions. We previously reported that c-di-GMP is a crucial inducer of cell aggregation of the cyanobacterium Thermosynechococcus vulcanus . The three cooperating cyanobacteriochrome photoreceptors...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 8; no. 1; pp. 5338 - 10
Main Authors Enomoto, Gen, Okuda, Yukiko, Ikeuchi, Masahiko
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 28.03.2018
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Cyclic diguanylate (c-di-GMP) is a bacterial second messenger involved in sessile/motile lifestyle transitions. We previously reported that c-di-GMP is a crucial inducer of cell aggregation of the cyanobacterium Thermosynechococcus vulcanus . The three cooperating cyanobacteriochrome photoreceptors (SesA/B/C) regulate cell aggregation in a light color–dependent manner by synthesizing/degrading c-di-GMP. Although a variety of c-di-GMP signaling proteins are encoded in cyanobacterial genomes, how c-di-GMP signaling networks are organized remains elusive. Here we experimentally demonstrate that the cellulose synthase Tll0007, which is essential for cell aggregation, binds c-di-GMP although the affinity is low (K d  = 63.9 ± 5.1 µM). We also show that SesA—the main trigger of cell aggregation—is subject to strict product feedback inhibition (IC50 = 1.07 ± 0.13 µM). These results suggest that SesA-produced c-di-GMP may not directly bind to Tll0007. We therefore systematically analyzed all 10 of the genes encoding proteins containing a c-di-GMP synthesis/degradation domain. We identified Tlr1612, harboring both domains, as the major repressor of cell aggregation under the repressing teal-green light irradiation. tlr1612 acts downstream of sesA and is not regulated transcriptionally by light color, suggesting that Tlr1612 may be involved in c-di-GMP amplification in the signaling cascade. Post-transcriptional control is likely crucial for the light-regulated c-di-GMP signaling.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-018-23628-4