Inhibition of avian-origin influenza A(H7N9) virus by the novel cap-dependent endonuclease inhibitor baloxavir marboxil

Human infections with avian-origin influenza A(H7N9) virus represent a serious threat to global health; however, treatment options are limited. Here, we show the inhibitory effects of baloxavir acid (BXA) and its prodrug baloxavir marboxil (BXM), a first-in-class cap-dependent endonuclease inhibitor...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 9; no. 1; p. 3466
Main Authors Taniguchi, Keiichi, Ando, Yoshinori, Nobori, Haruaki, Toba, Shinsuke, Noshi, Takeshi, Kobayashi, Masanori, Kawai, Makoto, Yoshida, Ryu, Sato, Akihiko, Shishido, Takao, Naito, Akira, Matsuno, Keita, Okamatsu, Masatoshi, Sakoda, Yoshihiro, Kida, Hiroshi
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 05.03.2019
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Human infections with avian-origin influenza A(H7N9) virus represent a serious threat to global health; however, treatment options are limited. Here, we show the inhibitory effects of baloxavir acid (BXA) and its prodrug baloxavir marboxil (BXM), a first-in-class cap-dependent endonuclease inhibitor, against A(H7N9), in vitro and in vivo . In cell culture, BXA at four nanomolar concentration achieved a 1.5–2.8 log reduction in virus titers of A(H7N9), including the NA-R292K mutant virus and highly pathogenic avian influenza viruses, whereas NA inhibitors or favipiravir required approximately 20-fold or higher concentrations to achieve the same levels of reduction. A(H7N9)-specific amino acid polymorphism at position 37, implicated in BXA binding to the PA endonuclease domain, did not impact on BXA susceptibility. In mice, oral administration of BXM at 5 and 50 mg/kg twice a day for 5 days completely protected from a lethal A/Anhui/1/2013 (H7N9) challenge, and reduced virus titers more than 2–3 log in the lungs. Furthermore, the potent therapeutic effects of BXM in mice were still observed when a higher virus dose was administered or treatment was delayed up to 48 hours post infection. These findings support further investigation of BXM for A(H7N9) treatment in humans.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-019-39683-4