A highly functional synthetic phage display library containing over 40 billion human antibody clones

Several synthetic antibody phage display libraries have been created and used for the isolation of human monoclonal antibodies. The performance of antibody libraries, which is usually measured in terms of their ability to yield high-affinity binding specificities against target proteins of interest,...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 9; no. 6; p. e100000
Main Authors Weber, Marcel, Bujak, Emil, Putelli, Alessia, Villa, Alessandra, Matasci, Mattia, Gualandi, Laura, Hemmerle, Teresa, Wulhfard, Sarah, Neri, Dario
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 20.06.2014
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Several synthetic antibody phage display libraries have been created and used for the isolation of human monoclonal antibodies. The performance of antibody libraries, which is usually measured in terms of their ability to yield high-affinity binding specificities against target proteins of interest, depends both on technical aspects (such as library size and quality of cloning) and on design features (which influence the percentage of functional clones in the library and their ability to be used for practical applications). Here, we describe the design, construction and characterization of a combinatorial phage display library, comprising over 40 billion human antibody clones in single-chain fragment variable (scFv) format. The library was designed with the aim to obtain highly stable antibody clones, which can be affinity-purified on protein A supports, even when used in scFv format. The library was found to be highly functional, as >90% of randomly selected clones expressed the corresponding antibody. When selected against more than 15 antigens from various sources, the library always yielded specific and potent binders, at a higher frequency compared to previous antibody libraries. To demonstrate library performance in practical biomedical research projects, we isolated the human antibody G5, which reacts both against human and murine forms of the alternatively spliced BCD segment of tenascin-C, an extracellular matrix component frequently over-expressed in cancer and in chronic inflammation. The new library represents a useful source of binding specificities, both for academic research and for the development of antibody-based therapeutics.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: MW AV SW DN. Performed the experiments: MW EB AP MM LG TH. Analyzed the data: MW EB AP AV MM LG SW DN. Contributed reagents/materials/analysis tools: MW EB AP AV MM LG SW TH DN. Wrote the paper: MW DN.
Competing Interests: We have read the journal’s policy and have the following conflicts. Dario Neri is a cofounder and shareholder of Philochem AG. Some authors were (MW, EB, AP, AV, TH) or are (MM, LG, SW) employed by Philochem AG, the company which owns the PHILODiamond Library. The conflicts of interest do not alter our adherence to PLOS ONE policies on sharing data and materials. The full information about the library construction (including sequences and oligos) is available in the paper.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0100000