Size controllable synthesis of ZSM-5 zeolite and its catalytic performance in the reaction of methanol conversion to aromatics

ZSM-5 zeolites were hydrothermally synthesized with commercial silica sol, and the crystal size was controlled by adding silicalite-1 seed in the synthetic system. The crystal size of ZSM-5 was affected by the crystallization time of seed, seed content and seed size. ZSM-5 zeolites with controllable...

Full description

Saved in:
Bibliographic Details
Published inRoyal Society open science Vol. 9; no. 3; p. 211284
Main Authors Niu, Xianjun, Bai, Yang, Du, Yi-En, Qi, Hongxue, Chen, Yongqiang
Format Journal Article
LanguageEnglish
Published England The Royal Society 01.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:ZSM-5 zeolites were hydrothermally synthesized with commercial silica sol, and the crystal size was controlled by adding silicalite-1 seed in the synthetic system. The crystal size of ZSM-5 was affected by the crystallization time of seed, seed content and seed size. ZSM-5 zeolites with controllable particle size in the range of 200-2200 nm could be obtained. The prepared samples with different particle sizes were used for the reaction of methanol conversion to aromatics (MTA). The results suggested that the HZSM-5 catalyst with small crystal size showed much longer catalyst lifetime and higher selectivity for C hydrocarbons and aromatics, especially C aromatics in the MTA reaction. Moreover, the introduction of zinc (Zn) into the HZSM-5 zeolites can considerably promote the selectivity to aromatics in the products. Zn modified HZSM-5 zeolites with different Zn loading amounts were prepared by the incipient wetness impregnation method, and the highest aromatics selectivity was obtained when the Zn loading was 1.0%. The improvement of methanol aromatization was ascribed to the synergistic effect of Brønsted acid sites and the newly formed Zn-Lewis acid sites.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Electronic supplementary material is available online at https://doi.org/10.6084/m9.figshare.c.5897032.
This article has been edited by the Royal Society of Chemistry, including the commissioning, peer review process and editorial aspects up to the point of acceptance.
ISSN:2054-5703
2054-5703
DOI:10.1098/rsos.211284