Size controllable synthesis of ZSM-5 zeolite and its catalytic performance in the reaction of methanol conversion to aromatics
ZSM-5 zeolites were hydrothermally synthesized with commercial silica sol, and the crystal size was controlled by adding silicalite-1 seed in the synthetic system. The crystal size of ZSM-5 was affected by the crystallization time of seed, seed content and seed size. ZSM-5 zeolites with controllable...
Saved in:
Published in | Royal Society open science Vol. 9; no. 3; p. 211284 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
The Royal Society
01.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | ZSM-5 zeolites were hydrothermally synthesized with commercial silica sol, and the crystal size was controlled by adding silicalite-1 seed in the synthetic system. The crystal size of ZSM-5 was affected by the crystallization time of seed, seed content and seed size. ZSM-5 zeolites with controllable particle size in the range of 200-2200 nm could be obtained. The prepared samples with different particle sizes were used for the reaction of methanol conversion to aromatics (MTA). The results suggested that the HZSM-5 catalyst with small crystal size showed much longer catalyst lifetime and higher selectivity for C
hydrocarbons and aromatics, especially C
aromatics in the MTA reaction. Moreover, the introduction of zinc (Zn) into the HZSM-5 zeolites can considerably promote the selectivity to aromatics in the products. Zn modified HZSM-5 zeolites with different Zn loading amounts were prepared by the incipient wetness impregnation method, and the highest aromatics selectivity was obtained when the Zn loading was 1.0%. The improvement of methanol aromatization was ascribed to the synergistic effect of Brønsted acid sites and the newly formed Zn-Lewis acid sites. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Electronic supplementary material is available online at https://doi.org/10.6084/m9.figshare.c.5897032. This article has been edited by the Royal Society of Chemistry, including the commissioning, peer review process and editorial aspects up to the point of acceptance. |
ISSN: | 2054-5703 2054-5703 |
DOI: | 10.1098/rsos.211284 |