A Novel Time–Frequency Parameterization Method for Oscillations in Specific Frequency Bands and Its Application on OPM-MEG
Time–frequency parameterization for oscillations in specific frequency bands reflects the dynamic changes in the brain. It is related to cognitive behavior and diseases and has received significant attention in neuroscience. However, many studies do not consider the impact of the aperiodic noise and...
Saved in:
Published in | Bioengineering (Basel) Vol. 11; no. 8; p. 773 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.08.2024
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Time–frequency parameterization for oscillations in specific frequency bands reflects the dynamic changes in the brain. It is related to cognitive behavior and diseases and has received significant attention in neuroscience. However, many studies do not consider the impact of the aperiodic noise and neural activity, including their time-varying fluctuations. Some studies are limited by the low resolution of the time–frequency spectrum and parameter-solved operation. Therefore, this paper proposes super-resolution time–frequency periodic parameterization of (transient) oscillation (STPPTO). STPPTO obtains a super-resolution time–frequency spectrum with Superlet transform. Then, the time–frequency representation of oscillations is obtained by removing the aperiodic component fitted in a time-resolved way. Finally, the definition of transient events is used to parameterize oscillations. The performance of this method is validated on simulated data and its reliability is demonstrated on magnetoencephalography. We show how it can be used to explore and analyze oscillatory activity under rhythmic stimulation. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2306-5354 2306-5354 |
DOI: | 10.3390/bioengineering11080773 |