A subsumptive, hierarchical, and distributed vision-based architecture for smart robotics

We present a distributed vision-based architecture for smart robotics that is composed of multiple control loops, each with a specialized level of competence. Our architecture is subsumptive and hierarchical, in the sense that each control loop can add to the competence level of the loops below, and...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on systems, man and cybernetics. Part B, Cybernetics Vol. 34; no. 5; pp. 1988 - 2002
Main Authors DeSouza, G.N., Kak, A.C.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.10.2004
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We present a distributed vision-based architecture for smart robotics that is composed of multiple control loops, each with a specialized level of competence. Our architecture is subsumptive and hierarchical, in the sense that each control loop can add to the competence level of the loops below, and in the sense that the loops can present a coarse-to-fine gradation with respect to vision sensing. At the coarsest level, the processing of sensory information enables a robot to become aware of the approximate location of an object in its field of view. On the other hand, at the finest end, the processing of stereo information enables a robot to determine more precisely the position and orientation of an object in the coordinate frame of the robot. The processing in each module of the control loops is completely independent and it can be performed at its own rate. A control Arbitrator ranks the results of each loop according to certain confidence indices, which are derived solely from the sensory information. This architecture has clear advantages regarding overall performance of the system, which is not affected by the "slowest link", and regarding fault tolerance, since faults in one module does not affect the other modules. At this time we are able to demonstrate the utility of the architecture for stereoscopic visual servoing. The architecture has also been applied to mobile robot navigation and can easily be extended to tasks such as "assembly-on-the-fly".
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:1083-4419
1941-0492
DOI:10.1109/TSMCB.2004.831768