Modeling the effect of VOCs from biomass burning emissions on ozone pollution in upper Southeast Asia

We used a Weather Research and Forecasting Model with Chemistry (WRF-CHEM) model that includes anthropogenic emissions from EDGAR-HTAP, biomass burning from FINN, and biogenic emissions from MEGAN to investigate the main volatile organic compound (VOC) ozone precursors during high levels of biomass...

Full description

Saved in:
Bibliographic Details
Published inHeliyon Vol. 5; no. 10; p. e02661
Main Authors Amnuaylojaroen, Teerachai, Macatangay, Ronald C., Khodmanee, Suratsawadee
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2019
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We used a Weather Research and Forecasting Model with Chemistry (WRF-CHEM) model that includes anthropogenic emissions from EDGAR-HTAP, biomass burning from FINN, and biogenic emissions from MEGAN to investigate the main volatile organic compound (VOC) ozone precursors during high levels of biomass burning emissions in March 2014 over upper Southeast Asia. A comparison between the model and ground-based measurement data shows that the WRF-CHEM model simulates the precipitation and 2 m temperature reasonably well, with index of agreement (IOA) values ranging from 0.76 to 0.78. Further, the model predicts O3, NO2, and CO fairly well, with IOA values ranging from 0.50 to 0.57. However, the magnitude of the simulated NO2 concentration was generally underestimated compared to OMI satellite observations. The model result shows that CO and VOCs such as BIGENE play an important role in atmospheric oxidation to surface O3. In addition, biomass burning emissions are responsible for increasing surface O3 by ∼1 ppmv and increasing the reaction rate of CO and BIGENE by approximately 0.5 × 106 and 1 × 106 molecules/cm3/s, respectively, in upper Southeast Asia. Environmental science; Atmospheric science; Climatology; Environmental chemistry; Environmental pollution; Earth-surface processes; Volatile organic compounds; Surface ozone; WRF-CHEM model; Southeast Asia
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2019.e02661