Hardware optimization for effective switching power reduction during data compression in GOLOMB rice coding

Loss-less data compression becomes the need of the hour for effective data compression and computation in VLSI test vector generation and testing in addition to hardware AI/ML computations. Golomb code is one of the effective technique for lossless data compression and it becomes valid only when the...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 19; no. 9; p. e0308796
Main Authors Sakthivel, R., Vijayalakshmi, Ch, Vanitha, M., AboRas, Kareem M., Abdelfattah, Waleed Mohammed, Ghadi, Yazeed Yasin, Rami Reddy, Ch
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 26.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Loss-less data compression becomes the need of the hour for effective data compression and computation in VLSI test vector generation and testing in addition to hardware AI/ML computations. Golomb code is one of the effective technique for lossless data compression and it becomes valid only when the divisor can be expressed as power of two. This work aims to increase compression ratio by further encoding the unary part of the Golomb Rice (GR) code so as to decrease the amount of bits used, it mainly focuses on optimizing the hardware for encoding side. The algorithm was developed and coded in Verilog and simulated using Modelsim. This code was then synthesised in Cadence Encounter RTL Synthesiser. The modifications carried out show around 6% to 19% reduction in bits used for a linearly distributed data set. Worst-case delays have been reduced by 3% to 8%. Area reduction varies from 22% to 36% for different methods. Simulation for Power consumption shows nearly 7% reduction in switching power. This ideally suggest the usage of Golomb Rice coding technique for test vector compression and data computation for multiple data types, which should ideally have a geometrical distribution.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0308796