Machine Learning for Optical Motion Capture-Driven Musculoskeletal Modelling from Inertial Motion Capture Data

Marker-based Optical Motion Capture (OMC) systems and associated musculoskeletal (MSK) modelling predictions offer non-invasively obtainable insights into muscle and joint loading at an in vivo level, aiding clinical decision-making. However, an OMC system is lab-based, expensive, and requires a lin...

Full description

Saved in:
Bibliographic Details
Published inBioengineering (Basel) Vol. 10; no. 5; p. 510
Main Authors Dasgupta, Abhishek, Sharma, Rahul, Mishra, Challenger, Nagaraja, Vikranth Harthikote
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 24.04.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Marker-based Optical Motion Capture (OMC) systems and associated musculoskeletal (MSK) modelling predictions offer non-invasively obtainable insights into muscle and joint loading at an in vivo level, aiding clinical decision-making. However, an OMC system is lab-based, expensive, and requires a line of sight. Inertial Motion Capture (IMC) techniques are widely-used alternatives, which are portable, user-friendly, and relatively low-cost, although with lesser accuracy. Irrespective of the choice of motion capture technique, one typically uses an MSK model to obtain the kinematic and kinetic outputs, which is a computationally expensive tool increasingly well approximated by machine learning (ML) methods. Here, an ML approach is presented that maps experimentally recorded IMC input data to the human upper-extremity MSK model outputs computed from (‘gold standard’) OMC input data. Essentially, this proof-of-concept study aims to predict higher-quality MSK outputs from the much easier-to-obtain IMC data. We use OMC and IMC data simultaneously collected for the same subjects to train different ML architectures that predict OMC-driven MSK outputs from IMC measurements. In particular, we employed various neural network (NN) architectures, such as Feed-Forward Neural Networks (FFNNs) and Recurrent Neural Networks (RNNs) (vanilla, Long Short-Term Memory, and Gated Recurrent Unit) and a comprehensive search for the best-fit model in the hyperparameters space in both subject-exposed (SE) as well as subject-naive (SN) settings. We observed a comparable performance for both FFNN and RNN models, which have a high degree of agreement (ravg,SE,FFNN=0.90±0.19, ravg,SE,RNN=0.89±0.17, ravg,SN,FFNN=0.84±0.23, and ravg,SN,RNN=0.78±0.23) with the desired OMC-driven MSK estimates for held-out test data. The findings demonstrate that mapping IMC inputs to OMC-driven MSK outputs using ML models could be instrumental in transitioning MSK modelling from ‘lab to field’.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2306-5354
2306-5354
DOI:10.3390/bioengineering10050510