SWI SNF complex is essential for NRSF-mediated suppression of neuronal genes in human nonsmall cell lung carcinoma cell lines

Mammalian chromatin remodeling factor, SWI/SNF complex contains a single molecule of either Brm or BRG1 as the ATPase catalytic subunit. Here, we show that the SWI/SNF complex forms a larger complex with neuron-restrictive silencer factor (NRSF) and its corepressors, mSin3A and CoREST, in human nons...

Full description

Saved in:
Bibliographic Details
Published inOncogene Vol. 25; no. 3; pp. 470 - 479
Main Authors WATANABE, H, MIZUTANI, T, HARAGUCHI, T, YAMAMICHI, N, MINOGUCHI, S, YAMAMICHI-NISHINA, M, MORI, N, KAMEDA, T, SUGIYAMA, T, IBA, H
Format Journal Article
LanguageEnglish
Published Basingstoke Nature Publishing 19.01.2006
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Mammalian chromatin remodeling factor, SWI/SNF complex contains a single molecule of either Brm or BRG1 as the ATPase catalytic subunit. Here, we show that the SWI/SNF complex forms a larger complex with neuron-restrictive silencer factor (NRSF) and its corepressors, mSin3A and CoREST, in human nonsmall cell lung carcinoma cell lines. We also demonstrate that the strong transcriptional suppression of such neuron-specific genes as synaptophysin and SCG10 by NRSF in these non-neural cells requires the functional SWI/SNF complex; these neuronal genes were elevated in cell lines deficient in both Brm and BRG1, whereas retrovirus vectors expressing siRNAs targeting integral components of SWI/SNF complex (Brm/BRG1 or Ini1) induced expression of these neuronal genes in SWI/SNF-competent cell lines. In cell lines deficient in both Brm and BRG1, exogenous Brm or BRG1 suppressed expression of these neuronal genes in an ATP-dependent manner and induced efficient and specific deacetylation of histone H4 around the NRSF binding site present in the synaptophysin gene by a large complex containing the recruited functional SWI/SNF complex. Patients with Brm/BRG1-deficient lung carcinoma have been reported to carry poor prognosis; derepression of NRSF-regulated genes including these neuron-specific genes could contribute to enhance tumorigenicity and also would provide selective markers for Brm/BRG1-deficient tumors.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0950-9232
1476-5594
DOI:10.1038/sj.onc.1209068