Neural substrates of tactile object recognition: An fMRI study

A functional magnetic resonance imaging (fMRI) study was conducted during which seven subjects carried out naturalistic tactile object recognition (TOR) of real objects. Activation maps, conjunctions across subjects, were compared between tasks involving TOR of common real objects, palpation of “non...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 21; no. 4; pp. 236 - 246
Main Authors Reed, Catherine L., Shoham, Shy, Halgren, Eric
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.04.2004
Wiley-Liss
Subjects
Online AccessGet full text
ISSN1065-9471
1097-0193
DOI10.1002/hbm.10162

Cover

Loading…
Abstract A functional magnetic resonance imaging (fMRI) study was conducted during which seven subjects carried out naturalistic tactile object recognition (TOR) of real objects. Activation maps, conjunctions across subjects, were compared between tasks involving TOR of common real objects, palpation of “nonsense” objects, and rest. The tactile tasks involved similar motor and sensory stimulation, allowing higher tactile recognition processes to be isolated. Compared to nonsense object palpation, the most prominent activation evoked by TOR was in secondary somatosensory areas in the parietal operculum (SII) and insula, confirming a modality‐specific path for TOR. Prominent activation was also present in medial and lateral secondary motor cortices, but not in primary motor areas, supporting the high level of sensory and motor integration characteristic of object recognition in the tactile modality. Activation in a lateral occipitotemporal area associated previously with visual object recognition may support cross‐modal collateral activation. Finally, activation in medial temporal and prefrontal areas may reflect a common final pathway of modality‐independent object recognition. This study suggests that TOR involves a complex network including parietal and insular somatosensory association cortices, as well as occipitotemporal visual areas, prefrontal, and medial temporal supramodal areas, and medial and lateral secondary motor cortices. It confirms the involvement of somatosensory association areas in the recognition component of TOR, and the existence of a ventrolateral somatosensory pathway for TOR in intact subjects. It challenges the results of previous studies that emphasize the role of visual cortex rather than somatosensory association cortices in higher‐level somatosensory cognition. Hum. Brain Mapping 21:236–246, 2004. © 2004 Wiley‐Liss, Inc.
AbstractList A functional magnetic resonance imaging (fMRI) study was conducted during which seven subjects carried out naturalistic tactile object recognition (TOR) of real objects. Activation maps, conjunctions across subjects, were compared between tasks involving TOR of common real objects, palpation of “nonsense” objects, and rest. The tactile tasks involved similar motor and sensory stimulation, allowing higher tactile recognition processes to be isolated. Compared to nonsense object palpation, the most prominent activation evoked by TOR was in secondary somatosensory areas in the parietal operculum (SII) and insula, confirming a modality‐specific path for TOR. Prominent activation was also present in medial and lateral secondary motor cortices, but not in primary motor areas, supporting the high level of sensory and motor integration characteristic of object recognition in the tactile modality. Activation in a lateral occipitotemporal area associated previously with visual object recognition may support cross‐modal collateral activation. Finally, activation in medial temporal and prefrontal areas may reflect a common final pathway of modality‐independent object recognition. This study suggests that TOR involves a complex network including parietal and insular somatosensory association cortices, as well as occipitotemporal visual areas, prefrontal, and medial temporal supramodal areas, and medial and lateral secondary motor cortices. It confirms the involvement of somatosensory association areas in the recognition component of TOR, and the existence of a ventrolateral somatosensory pathway for TOR in intact subjects. It challenges the results of previous studies that emphasize the role of visual cortex rather than somatosensory association cortices in higher‐level somatosensory cognition. Hum. Brain Mapping 21:236–246, 2004. © 2004 Wiley‐Liss, Inc.
A functional magnetic resonance imaging (fMRI) study was conducted during which seven subjects carried out naturalistic tactile object recognition (TOR) of real objects. Activation maps, conjunctions across subjects, were compared between tasks involving TOR of common real objects, palpation of nonsense objects, and rest. The tactile tasks involved similar motor and sensory stimulation, allowing higher tactile recognition processes to be isolated. Compared to nonsense object palpation, the most prominent activation evoked by TOR was in secondary somatosensory areas in the parietal operculum (SII) and insula, confirming a modality-specific path for TOR. Prominent activation was also present in medial and lateral secondary motor cortices, but not in primary motor areas, supporting the high level of sensory and motor integration characteristic of object recognition in the tactile modality. Activation in a lateral occipitotemporal area associated previously with visual object recognition may support cross-modal collateral activation. Finally, activation in medial temporal and prefrontal areas may reflect a common final pathway of modality-independent object recognition. This study suggests that TOR involves a complex network including parietal and insular somatosensory association cortices, as well as occipitotemporal visual areas, prefrontal, and medial temporal supramodal areas, and medial and lateral secondary motor cortices. It confirms the involvement of somatosensory association areas in the recognition component of TOR, and the existence of a ventrolateral somatosensory pathway for TOR in intact subjects. It challenges the results of previous studies that emphasize the role of visual cortex rather than somatosensory association cortices in higher-level somatosensory cognition. Hum. Brain Mapping 21:236-246, 2004.
A functional magnetic resonance imaging (fMRI) study was conducted during which seven subjects carried out naturalistic tactile object recognition (TOR) of real objects. Activation maps, conjunctions across subjects, were compared between tasks involving TOR of common real objects, palpation of "nonsense" objects, and rest. The tactile tasks involved similar motor and sensory stimulation, allowing higher tactile recognition processes to be isolated. Compared to nonsense object palpation, the most prominent activation evoked by TOR was in secondary somatosensory areas in the parietal operculum (SII) and insula, confirming a modality-specific path for TOR. Prominent activation was also present in medial and lateral secondary motor cortices, but not in primary motor areas, supporting the high level of sensory and motor integration characteristic of object recognition in the tactile modality. Activation in a lateral occipitotemporal area associated previously with visual object recognition may support cross-modal collateral activation. Finally, activation in medial temporal and prefrontal areas may reflect a common final pathway of modality-independent object recognition. This study suggests that TOR involves a complex network including parietal and insular somatosensory association cortices, as well as occipitotemporal visual areas, prefrontal, and medial temporal supramodal areas, and medial and lateral secondary motor cortices. It confirms the involvement of somatosensory association areas in the recognition component of TOR, and the existence of a ventrolateral somatosensory pathway for TOR in intact subjects. It challenges the results of previous studies that emphasize the role of visual cortex rather than somatosensory association cortices in higher-level somatosensory cognition.
A functional magnetic resonance imaging (fMRI) study was conducted during which seven subjects carried out naturalistic tactile object recognition (TOR) of real objects. Activation maps, conjunctions across subjects, were compared between tasks involving TOR of common real objects, palpation of "nonsense" objects, and rest. The tactile tasks involved similar motor and sensory stimulation, allowing higher tactile recognition processes to be isolated. Compared to nonsense object palpation, the most prominent activation evoked by TOR was in secondary somatosensory areas in the parietal operculum (SII) and insula, confirming a modality-specific path for TOR. Prominent activation was also present in medial and lateral secondary motor cortices, but not in primary motor areas, supporting the high level of sensory and motor integration characteristic of object recognition in the tactile modality. Activation in a lateral occipitotemporal area associated previously with visual object recognition may support cross-modal collateral activation. Finally, activation in medial temporal and prefrontal areas may reflect a common final pathway of modality-independent object recognition. This study suggests that TOR involves a complex network including parietal and insular somatosensory association cortices, as well as occipitotemporal visual areas, prefrontal, and medial temporal supramodal areas, and medial and lateral secondary motor cortices. It confirms the involvement of somatosensory association areas in the recognition component of TOR, and the existence of a ventrolateral somatosensory pathway for TOR in intact subjects. It challenges the results of previous studies that emphasize the role of visual cortex rather than somatosensory association cortices in higher-level somatosensory cognition.A functional magnetic resonance imaging (fMRI) study was conducted during which seven subjects carried out naturalistic tactile object recognition (TOR) of real objects. Activation maps, conjunctions across subjects, were compared between tasks involving TOR of common real objects, palpation of "nonsense" objects, and rest. The tactile tasks involved similar motor and sensory stimulation, allowing higher tactile recognition processes to be isolated. Compared to nonsense object palpation, the most prominent activation evoked by TOR was in secondary somatosensory areas in the parietal operculum (SII) and insula, confirming a modality-specific path for TOR. Prominent activation was also present in medial and lateral secondary motor cortices, but not in primary motor areas, supporting the high level of sensory and motor integration characteristic of object recognition in the tactile modality. Activation in a lateral occipitotemporal area associated previously with visual object recognition may support cross-modal collateral activation. Finally, activation in medial temporal and prefrontal areas may reflect a common final pathway of modality-independent object recognition. This study suggests that TOR involves a complex network including parietal and insular somatosensory association cortices, as well as occipitotemporal visual areas, prefrontal, and medial temporal supramodal areas, and medial and lateral secondary motor cortices. It confirms the involvement of somatosensory association areas in the recognition component of TOR, and the existence of a ventrolateral somatosensory pathway for TOR in intact subjects. It challenges the results of previous studies that emphasize the role of visual cortex rather than somatosensory association cortices in higher-level somatosensory cognition.
Author Shoham, Shy
Reed, Catherine L.
Halgren, Eric
AuthorAffiliation 2 Department of Molecular Biology, Princeton University, Princeton, New Jersey
3 Department of Radiology, Harvard Medical School, Boston, Massachusetts
1 Department of Psychology, University of Denver, Denver, Colorado
AuthorAffiliation_xml – name: 1 Department of Psychology, University of Denver, Denver, Colorado
– name: 3 Department of Radiology, Harvard Medical School, Boston, Massachusetts
– name: 2 Department of Molecular Biology, Princeton University, Princeton, New Jersey
Author_xml – sequence: 1
  givenname: Catherine L.
  surname: Reed
  fullname: Reed, Catherine L.
  email: creed@du.edu
  organization: Department of Psychology, University of Denver, Denver, Colorado
– sequence: 2
  givenname: Shy
  surname: Shoham
  fullname: Shoham, Shy
  organization: Department of Molecular Biology, Princeton University, Princeton, New Jersey
– sequence: 3
  givenname: Eric
  surname: Halgren
  fullname: Halgren, Eric
  organization: Department of Radiology, Harvard Medical School, Boston, Massachusetts
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15597124$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/15038005$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1v1DAQxS1URD_gwD-AcgGJQ-hMEtsJh0pl1S-pLRIsKjfL8U5al2xcbKew_z1edlsKEnCakfx7T8_zttnG4AZi7DnCGwQodq_aeVpQFI_YFkIjc8Cm3FjugudNJXGTbYdwDYDIAZ-wzTTKGoBvsb1zGr3uszC2IXodKWSuy6I20faUufaaTMw8GXc52Gjd8DbbH7Lu7MNJFuI4WzxljzvdB3q2njvs0-HBdHKcn74_Opnsn-aGS1HktWkE16IuWt3VRghZtwa5xBZmHULBq4bAiEqjKTsiLQTUJcKMSDQFryWUO2xv5XsztnOaGRpS2F7deDvXfqGctur3l8FeqUt3q0QtsSlEMni1NvDu60ghqrkNhvpeD-TGoCTKqqp481-wgHTPCjCBLx5Gus9yd9sEvFwDOhjdd14PxoYHHG8kFlXiXq84410InrpfCKhlvyr1q372m9jdP1hjo14Wk35t-38pvqVCF3-3Vsfvzu4U-UphQ6Tv9wrtvyghS8nVxfmRmkwPpxcf8bOqyx9XKsQJ
CitedBy_id crossref_primary_10_1002_hbm_22040
crossref_primary_10_1093_cercor_bhae354
crossref_primary_10_1016_j_jneumeth_2011_06_030
crossref_primary_10_1016_j_neuropsychologia_2011_01_034
crossref_primary_10_1007_s40544_022_0679_5
crossref_primary_10_1016_j_neuroimage_2007_05_052
crossref_primary_10_1002_hbm_20384
crossref_primary_10_3390_s150407913
crossref_primary_10_3389_fpsyg_2014_00636
crossref_primary_10_1093_cercor_bht252
crossref_primary_10_1068_p5504
crossref_primary_10_1101_lm_97605
crossref_primary_10_5143_JESK_2014_33_5_395
crossref_primary_10_1016_j_clinph_2021_04_005
crossref_primary_10_1016_j_heares_2009_04_022
crossref_primary_10_1080_09541440802311956
crossref_primary_10_1016_j_cogbrainres_2004_10_020
crossref_primary_10_3389_fnhum_2015_00691
crossref_primary_10_1093_cercor_bhp208
crossref_primary_10_3389_fnins_2024_1297344
crossref_primary_10_1080_1357650X_2012_701631
crossref_primary_10_1016_j_neuroimage_2007_08_026
crossref_primary_10_1016_j_cortex_2016_12_007
crossref_primary_10_1523_JNEUROSCI_0623_11_2011
crossref_primary_10_1016_j_brainres_2008_04_081
crossref_primary_10_1152_jn_00546_2015
crossref_primary_10_1016_j_neuropsychologia_2014_02_009
crossref_primary_10_1016_j_neuroimage_2015_11_058
crossref_primary_10_1093_cercor_bhv020
crossref_primary_10_1007_s11571_017_9452_2
crossref_primary_10_1007_s00221_024_06888_7
crossref_primary_10_1016_j_neubiorev_2017_01_017
crossref_primary_10_1155_2012_304045
crossref_primary_10_3389_fpsyg_2017_01787
crossref_primary_10_1016_j_bbr_2014_08_049
crossref_primary_10_1093_cercor_bhv170
crossref_primary_10_1093_cercor_bhy322
crossref_primary_10_1152_jn_00836_2014
crossref_primary_10_1016_j_jneumeth_2012_12_002
crossref_primary_10_7554_eLife_98148_3
crossref_primary_10_1016_j_nicl_2013_01_013
crossref_primary_10_7554_eLife_98148
crossref_primary_10_1007_s00429_021_02378_6
crossref_primary_10_1016_j_mri_2004_10_003
crossref_primary_10_1016_j_neuropsychologia_2008_07_027
crossref_primary_10_1097_WNR_0b013e32832c5f65
crossref_primary_10_1017_S0140525X07001598
crossref_primary_10_1016_j_neuropsychologia_2006_03_003
crossref_primary_10_1016_j_actpsy_2011_06_007
crossref_primary_10_3389_fnins_2021_588593
crossref_primary_10_1111_j_1460_9568_2005_04267_x
crossref_primary_10_1038_s41598_021_03147_5
crossref_primary_10_3389_fnhum_2014_01070
crossref_primary_10_1016_j_neulet_2021_135805
crossref_primary_10_3389_fnhum_2017_00445
crossref_primary_10_1007_s11042_017_4392_8
crossref_primary_10_2147_NDT_S488059
crossref_primary_10_1016_j_brainresbull_2010_08_001
crossref_primary_10_1162_imag_a_00065
crossref_primary_10_1145_2700433
crossref_primary_10_2496_hbfr_26_253
crossref_primary_10_1016_j_neuroscience_2007_12_021
crossref_primary_10_1007_s00234_007_0354_6
crossref_primary_10_1016_j_biopsycho_2017_03_010
crossref_primary_10_1093_cercor_bhy151
crossref_primary_10_1016_j_brainres_2008_03_075
crossref_primary_10_1523_JNEUROSCI_5717_09_2010
crossref_primary_10_1016_j_neuroscience_2006_08_008
crossref_primary_10_1007_s00221_005_2396_5
crossref_primary_10_1016_j_neulet_2005_12_052
crossref_primary_10_1523_JNEUROSCI_0859_14_2015
crossref_primary_10_1093_cercor_bhae277
crossref_primary_10_1152_jn_00160_2020
crossref_primary_10_1007_s00221_008_1390_0
crossref_primary_10_1016_j_dcn_2017_02_005
crossref_primary_10_1101_lm_1028008
crossref_primary_10_1371_journal_pone_0069931
crossref_primary_10_1162_jocn_2009_21006
crossref_primary_10_1523_JNEUROSCI_1745_11_2011
crossref_primary_10_3389_fnins_2016_00460
crossref_primary_10_1016_j_cortex_2018_09_024
crossref_primary_10_1080_08927936_2017_1335115
crossref_primary_10_1017_S0140525X07001574
crossref_primary_10_1002_brb3_27
crossref_primary_10_1002_hbm_20977
crossref_primary_10_1016_j_neuroimage_2021_118510
crossref_primary_10_1152_jn_00624_2011
crossref_primary_10_1152_jn_00806_2006
crossref_primary_10_16925_in_v13i21_1725
crossref_primary_10_1016_j_heliyon_2024_e31256
crossref_primary_10_1145_1166087_1166093
crossref_primary_10_1002_hbm_20456
crossref_primary_10_1002_hbm_23845
crossref_primary_10_1101_lm_964708
crossref_primary_10_1097_WNR_0000000000001419
crossref_primary_10_1089_brain_2014_0288
crossref_primary_10_1142_S0219635209002137
crossref_primary_10_1080_13554794_2019_1694951
crossref_primary_10_1016_j_neuroimage_2014_03_013
crossref_primary_10_1371_journal_pone_0085743
crossref_primary_10_1097_WNR_0000000000000683
crossref_primary_10_1038_s42003_020_0793_8
crossref_primary_10_1111_j_1469_8986_2006_00491_x
crossref_primary_10_1016_j_nicl_2015_04_005
crossref_primary_10_1016_j_neubiorev_2020_06_034
crossref_primary_10_1002_hbm_21419
crossref_primary_10_1016_j_cub_2009_04_057
crossref_primary_10_1093_cercor_bhq289
crossref_primary_10_1111_srt_13122
crossref_primary_10_1002_hbm_24764
crossref_primary_10_1016_j_neuroimage_2011_12_059
crossref_primary_10_1007_s00234_007_0239_8
crossref_primary_10_1016_j_neuropsychologia_2011_12_024
crossref_primary_10_1016_j_neuroimage_2007_01_057
crossref_primary_10_1016_j_neuropharm_2018_11_033
crossref_primary_10_1016_j_cortex_2019_01_018
crossref_primary_10_3389_fneur_2015_00211
crossref_primary_10_1016_j_neuropsychologia_2015_08_008
crossref_primary_10_1016_j_brainres_2012_03_060
crossref_primary_10_3389_fpsyg_2014_00538
crossref_primary_10_1016_j_neuropsychologia_2005_02_002
crossref_primary_10_1111_j_1469_8749_2008_03105_x
crossref_primary_10_1523_JNEUROSCI_5389_05_2006
crossref_primary_10_1016_j_humov_2018_11_012
crossref_primary_10_1017_S0140525X07001392
crossref_primary_10_1162_jocn_a_00411
crossref_primary_10_1073_pnas_1400806111
crossref_primary_10_1016_j_neuroscience_2017_03_038
crossref_primary_10_1016_j_bbr_2015_06_012
crossref_primary_10_1152_jn_00177_2014
crossref_primary_10_1016_j_heliyon_2019_e03032
crossref_primary_10_1523_JNEUROSCI_1574_20_2021
crossref_primary_10_1080_17518423_2017_1338777
crossref_primary_10_1007_s00221_009_1949_4
crossref_primary_10_1016_j_cortex_2012_07_002
crossref_primary_10_1007_s00429_017_1510_3
crossref_primary_10_1016_j_bandc_2005_07_004
crossref_primary_10_1068_p5679
crossref_primary_10_1016_j_conb_2005_03_011
crossref_primary_10_1007_s10548_009_0087_4
crossref_primary_10_1016_j_neuroimage_2004_11_044
crossref_primary_10_3389_fnins_2020_00182
crossref_primary_10_1007_s00221_004_2187_4
crossref_primary_10_1093_cercor_bhm146
crossref_primary_10_1016_j_jneumeth_2006_07_020
crossref_primary_10_1162_netn_a_00050
crossref_primary_10_1109_TNSRE_2023_3312336
crossref_primary_10_3758_s13423_024_02471_x
crossref_primary_10_3758_PP_70_7_1350
crossref_primary_10_1177_154193120905300117
Cites_doi 10.1016/B978-012692545-6/50020-9
10.1016/S0010-9452(80)80041-4
10.1001/archneur.1970.00480250045007
10.1007/978-1-4615-2546-2_48
10.1016/0028-3932(94)90142-2
10.1016/S1364-6613(98)01171-1
10.1038/85201
10.1038/380526a0
10.1038/44139
10.1097/00001756-199712220-00008
10.1016/0028-3932(65)90004-7
10.1212/WNL.43.4.762
10.1152/jn.1996.75.4.1730
10.3758/BF03197463
10.1162/jocn.1997.9.5.648
10.1037/0096-3445.116.4.356
10.1152/jn.1993.70.1.331
10.1007/s002210050838
10.3109/08990229309028839
10.1097/00001756-199611250-00008
10.1523/JNEUROSCI.16-20-06504.1996
10.1097/00007611-195407000-00024
10.1016/0028-3932(79)90005-8
10.1073/pnas.97.17.9777
10.1212/WNL.52.7.1413
10.1093/cercor/12.11.1202
10.1093/brain/119.5.1565
10.1006/nimg.1999.0484
10.1002/hbm.460020402
10.3758/BF03211351
10.1111/j.1460-9568.1994.tb00255.x
10.1007/BF00239726
10.1016/S1053-8119(00)91618-5
10.1002/cne.901920105
10.1002/ana.410170212
10.1016/S0028-3932(02)00017-9
10.1002/hbm.460030303
10.3758/BF03211702
10.1037/0096-1523.25.6.1867
10.1097/00001756-199811160-00019
10.1037/0278-7393.23.1.153
10.1093/brain/119.3.875
10.1002/jmri.1880060402
10.1162/089892900564037
10.1212/WNL.37.8.1301
10.1523/JNEUROSCI.15-05-03821.1995
10.1002/cne.902520304
10.1093/brain/93.4.793
10.1002/(SICI)1097-0193(1999)7:1<29::AID-HBM3>3.0.CO;2-R
10.1016/S0025-6196(12)60484-4
10.1037/0278-7393.25.3.644
10.1073/pnas.95.6.3295
10.1016/0166-4328(84)90009-3
10.1046/j.1460-9568.1999.00753.x
ContentType Journal Article
Copyright Copyright © 2004 Wiley‐Liss, Inc.
2004 INIST-CNRS
Copyright 2004 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2004 Wiley‐Liss, Inc.
– notice: 2004 INIST-CNRS
– notice: Copyright 2004 Wiley-Liss, Inc.
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
DOI 10.1002/hbm.10162
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList
Neurosciences Abstracts
MEDLINE

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Tactile Object Recognition
EISSN 1097-0193
EndPage 246
ExternalDocumentID PMC6871926
15038005
15597124
10_1002_hbm_10162
HBM10162
ark_67375_WNG_CTFTWS1X_8
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: USPHS
  funderid: NS18741
– fundername: NSF
  funderid: IBN‐9805999
– fundername: NINDS NIH HHS
  grantid: R01 NS018741
– fundername: NINDS NIH HHS
  grantid: NS18741
– fundername: USPHS
  grantid: NS18741
– fundername: NSF
  grantid: IBN‐9805999
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ABUWG
ACBWZ
ACCFJ
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GAKWD
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RPM
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
AANHP
AAYCA
ACCMX
ACRPL
ACYXJ
ADNMO
AAFWJ
AAYXX
AFPKN
AGQPQ
CITATION
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
ID FETCH-LOGICAL-c5762-8c965a682baf8c6678bc1571b0df102549e0c64a1c3feea6608310dee69258703
IEDL.DBID DR2
ISSN 1065-9471
IngestDate Thu Aug 21 14:09:03 EDT 2025
Tue Aug 05 10:57:36 EDT 2025
Sun Aug 24 04:11:16 EDT 2025
Wed Feb 19 01:36:38 EST 2025
Mon Jul 21 09:15:14 EDT 2025
Tue Jul 01 04:25:50 EDT 2025
Thu Apr 24 23:03:48 EDT 2025
Wed Jan 22 17:00:30 EST 2025
Wed Oct 30 09:52:30 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Human
object recognition
Nervous system diseases
Radiodiagnosis
tactile
Central nervous system
touch
Nuclear magnetic resonance imaging
Encephalon
Somatosensory cortex
fMRI
somatosensory
Haptic perception
haptic
Somesthetic pathway
second somatosensory cortex
Recognition
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
Copyright 2004 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5762-8c965a682baf8c6678bc1571b0df102549e0c64a1c3feea6608310dee69258703
Notes ark:/67375/WNG-CTFTWS1X-8
ArticleID:HBM10162
istex:8D293E47DED9087E1580BDF7077B9C58580F5BF8
USPHS - No. NS18741
NSF - No. IBN-9805999
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.10162?download=true
PMID 15038005
PQID 20471401
PQPubID 23462
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6871926
proquest_miscellaneous_71744459
proquest_miscellaneous_20471401
pubmed_primary_15038005
pascalfrancis_primary_15597124
crossref_primary_10_1002_hbm_10162
crossref_citationtrail_10_1002_hbm_10162
wiley_primary_10_1002_hbm_10162_HBM10162
istex_primary_ark_67375_WNG_CTFTWS1X_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2004
PublicationDateYYYYMMDD 2004-04-01
PublicationDate_xml – month: 04
  year: 2004
  text: April 2004
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: New York, NY
– name: United States
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum. Brain Mapp
PublicationYear 2004
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley-Liss
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley-Liss
References Sinclair RJ, Burton H (1993): Neuronal activity in the second somatosensory cortex of monkeys (Macaca mulatta) during active touch of gratings. J Neurophysiol 70: 331-350.
Moore CI, Crosier E, Greve DN, Savoy R, Merzenich MM, Dale AM (2002): Cortical correlates of vibrotactile detection in humans. San Francisco: Cognitive Neuroscience Society.
Semmes J (1965): A non-tactual factor in astereognosis. Neuropsychologia 3: 295-315.
Platz T (1996): Tactile agnosia. Casuistic evidence and theoretical remarks on modality-specific meaning representations and sensorimotor integration. Brain 119: 1565-1574.
Ginsburg MD, Yoshii F, Vibulsresth S, Chang JY, Duara R, Barker WW, Boothe TE (1987): Human task-specific somatosensory activation. Neurology 37: 1301-1308.
Zangaladze A, Epstein CM, Grafton ST, Sathian K (1999): Involvement of visual cortex in tactile discrimination of orientation. Nature 401: 587-590.
Binkofski F, Buccino G, Posse S, Seitz RJ, Rizzolatti G, Freund H (1999a): Fronto-parietal circuit for object manipulation in man: evidence from an fMRI study. Eur J Neurosci 11: 3276-3286.
Brett M, Anton JL, Valabregue R, Poline JB (2002): Region of interest analysis using an SPM toolbox [abstract]. Presented at the 8th International Conference on Functional Mapping of the Human Brain, June 2-6, 2002, Sendai, Japan. Neuroimage 16: 497A.
Sadato N, Pascual-Leone A, Grafman J, Ibanez V, Deiber MP, Dold G, Hallett M (1996): Activation of the primary visual cortex by Braille reading in blind subjects. Nature 380: 526-528.
Klatzky RL, Lederman SJ, Reed CL (1987): There's more to touch than meets the eye: the salience of object attributes for haptics with and without vision. J Exp Psychol Gen 116: 356-369.
Murray EA, Mishkin M (1984): Relative contributions of SII and area 5 to tactile discrimination in monkeys. Behav Brain Res 11: 67-83.
Farah MJ (1980): Visual agnosia. Cambridge, MA: MIT Press.
Friston KJ, Holmes AP, Price CJ, Buchel C, Worsley KJ (1999): Multisubject fMRI studies and conjunction analyses. Neuroimage 10: 385-396.
Corkin S, Milner B, Rasmussen T (1970): Somatosensory thresholds-contrasting effects of postcentral-gyrus and posterior parietal-lobe excisions. Arch Neurol 23: 41-58.
Norrsell U (1978): Sensory defects caused by lesions of the first (SI) and second (SII) somatosensory areas of the dog. Exp Brain Res 32: 181-195.
Easton RD, Srinivas K, Greene AJ (1997): Do vision and haptics share common representations? Implicit and explicit memory within and between modalities. J Exp Psychol Learn Mem Cogn 23: 153-163.
Binkofski F, Buccino G, Stephan KM, Rizzolatti G, Seitz RJ, Freund HJ (1999b): A parieto-premotor network for object manipulation: evidence from neuroimaging. Exp Brain Res 128: 210-213.
Deibert E, Kraut M, Kremen S, Hart J (1999): Neural pathways in tactile object recognition. Neurology 52: 1413-1417.
Roland PE (1993): Brain activation. New York: John Wiley and Sons.
Talairach J, Tournoux P (1988): Co-planar stereotaxic atlas of the human brain. New York: Thieme.
Friedman DP, Murray EA, O'Neill JB, Mishkin M (1986): Cortical connections of the somatosensory fields of the lateral sulcus of macaques: evidence of a corticolimbic pathway for touch. J Comp Neurol 252: 323-347.
Klein I, Paradis AL, Poline JB, Kosslyn SM, Bihan DL (2000): Transient activity in the human calcarine cortex during visual-mental imagery: an event-related fMRI study. J Cogn Neurosci 12: 15-23.
O'Sullivan BT, Roland PE, Kawashima R (1994): A PET study of somatosensory discrimination in man: microgeometry versus macrogeometry. Eur J Neurosci 6: 137-148.
Krubitzer L, Clarey J, Tweedale R, Elston G, Calford M (1995): A redefinition of somatosensory areas in the lateral sulcus of macaque monkeys. J Neurosci 15: 3821-3839.
Passingham RE (1996): Functional specialization of the supplementary motor area in monkeys and humans. Adv Neurol 70: 105-116.
Amedi A, Jacobson G, Hendler T, Malach R, Zohary E (2002): Convergence of visual and tactile shape processing in the human lateral occipital complex. Cereb Cortex 12: 1202-1212.
James TW, Humphrey GK, Gati JS, Servos P, Menon RS, Goodale MA (2002): Haptic study of three-dimensional objects activates extrastriate visual areas. Neuropsychologia 40: 1706-1714.
Chen W, Toshinoir K, Xio-Hong Z, Ogawa S, Tank DW, Ugurbil K (1998): Human primary visual cortex and lateral geniculate nucleus activation during visual imagery. Neuroreport 9: 3669-3674.
Halgren E, Dale AM, Sereno MI, Tootell RB, Marinkovic K, Rosen BR (1999): Location of human face-selective cortex with respect to retinotopic areas. Hum Brain Mapp 7: 29-37.
Zhou YD, Fuster JM (2000): Visuo-tactile cross-modal associations in cortical somatosensory cells. Proc Natl Acad Sci USA 97: 9777-9782.
Friston KJ, Holmes AP, Worsley KJ, Poline JB, Frith CD, Frackowiak RS (1995b): Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 2: 189-210.
Garcha H, Ettlinger G (1980): Tactile discrimination learning in the monkey: the effects of unilateral or bilateral removals of the second somatosensory cortex (area SII). Cortex 16: 397-412.
Roland PE, O'Sullivan B, Kawashima R (1998): Shape and roughness activate different somatosensory areas in the human brain. Proc Natl Acad Sci USA 95: 3295-3300.
Lin W, Kuppusamy K, Haacke EM, Burton H (1996): Functional MRI in human somatosensory cortex activated by touching textured surfaces. J Magn Reson Imaging 6: 565-572.
Friston KJ, Ashburner J, Poline JB, Frith CD, Heather JD, Frackowiak RS (1995a): Spatial registration and normalization of images. Hum Brain Mapp 2: 165-189.
Reales JM, Ballesteros S (1999): Implicit and explicit memory for visual and haptic objects: Cross-modal priming depends on structural descriptions. J Exp Psychol Learn Mem Cogn 25: 644-663.
Mellet E, Tzourio N, Crivello F, Joliot M, Denis M, Mazoyer B (1996): Functional anatomy of spatial mental imagery generated from verbal instructions. J Neurosci 16: 6504-6512.
Burton H, Videen TO, Raichle ME (1993): Tactile-vibration-activated foci in insular and parietal-opercular cortex studied with positron emission tomography mapping the second somatosensory area in humans. Somatosens Mot Res 10: 297-308.
Penfield W, Jasper H (1954): Epilepsy and the functional anatomy of the human brain. Boston, MA: Little, Brown and Co.
Kerst SM, Howard JH Jr (1978): Memory psychophysics for visual area and length. Mem Cogn 6: 327-335.
Anton JL, Benali H, Guigon E, Di Paola M, Bittoun J, Jolivet O, Burnod Y (1996): Functional MR imaging of the human sensorimotor cortex during haptic discrimination. Neuroreport 7: 2849-2852.
Bushnell EW, Baxt C (1999): Children's haptic and cross-modal recognition with familiar and unfamiliar objects. J Exp Psychol Hum Percept Perform 25: 1867-1881.
Caselli RJ (1991): Rediscovering tactile agnosia. Mayo Clin Proc 66: 129-142.
Tootell RB, Hadjikhani NK, Mendola JD, Marrett S, Dale AM (1998): From retinotopy to recognition: fMRI in human visual cortex. Trends Cogn Sci 2: 174-183.
Sathian K, Zangaladze A, Hoffman JM, Grafton ST (1997): Feeling with the mind's eye. Neuroreport 8: 3877-3881.
Reed CL, Caselli RJ (1994): The nature of tactile agnosia: a case study. Neuropsychologia 32: 527-539.
Servos P, Lederman S, Wilson D, Gati J (2001): fMRI-derived cortical maps for shape, roughness, and hardness. Soc Neurosci Abstr:24.
Reed CL, Caselli RJ, Farah MJ (1996): Tactile agnosia. Underlying impairment and implications for normal tactile object recognition. Brain 119: 875-888.
Evans AC, Collins DL, Mills SR, Brown ED, Kelly RL, Peters TM (1993): 3-D statistical neuroanatomical models from 305 MRI volumes. In: Proceedings IEEE-Nuclear Science Symposium and Medical Imaging Conference. Piscataway, NJ: IEEE Inc. p 1813-1817.
Mazziotta JC, Phelps ME, Halgren E (1983): Local cerebral glucose metabolic response to audiovisual stimulation and deprivation: studies in human subjects with positron CT. Hum Neurobiol 2: 11-23.
Shulman GL, Fiez JA, Corbetta M, Buckner RL, Miezin FM, Raichle ME, Petersen SE (1997): Common blood flow changes across visual tasks. II: Decreases in cerebral cortex. J Cogn Neurosci 9: 648-663.
Jones EG, Powell TP (1970): An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93: 793-820.
Robinson CJ, Burton H (1980): Organization of somatosensory receptive fields in cortical areas 7b, retroinsula, postauditory and granular insula of M. fascicularis. J Comp Neurol 192: 69-92.
Bonda E, Petrides M, Evans A (1996): Neural systems for tactual memories. J Neurophysiol 75: 1730-1737.
Klatzky RL, Lederman SJ (1992): Stages of manual exploration in haptic object identification. Percept Psychophys 52: 661-670.
Klatzky RL, Lederman S, Metzger V (1985): Identifying objects by touch: an "expert system." Percept Psychophys 37: 299-302.
Amedi A, Malach R, Hendler T, Peled S, Zohary E (2001): Visuohaptic object-related activation in the ventral visual pathway. Nat Neurosci 4: 324-330.
Reed CL, Dale AM, Dhond RP, Post D, Paulson K, Halgren E (2000): Activation of ventrolateral somatosensory cortex for tactile pattern discrimination using MEG. Neuroimage 11: S688.
Caselli RJ (1993): Ventrolateral and dorsomedial somatosensory association cortex damage produces distinct somesthetic syndromes in humans. Neurology 43: 762-771.
Mishkin M (1979): Analogous neural models for tactual and visual learning. Neuropsychologia 17: 139-150.
Lüders H, Lesser RP, Dinner DS, Hahn JF, Salanga V, Morris HH (1985): The second sensory area in humans, evoked potentials and electrical stimulation studies. Ann Neurol 17: 177-184.
2002; 16
1983; 2
1986; 252
1978; 32
1999a; 11
2002; 12
1996; 380
1995b; 2
1996; 70
1999; 401
1997; 9
1996; 75
1987; 37
1978; 6
1992; 52
1997; 8
1965; 3
1994; 264
1985; 17
1987; 116
2000
2000; 12
2002; 40
1993; 70
1984; 11
2000; 11
2000; 97
1970; 23
1999; 10
1999; 52
1982
1980
1998; 95
1996; 6
1994; 32
1996; 7
1988
1979; 17
1999b; 128
1995; 15
1993; 43
1999; 25
1997; 23
1954
1993
1980; 192
1970; 93
2002
1999; 7
1996; 16
2001; 24
1999
1980; 16
1988; 4
1987; 21
1995a; 2
2001; 4
1991; 66
1993; 10
1984; 5
1998; 2
1985; 37
1996; 119
1998; 9
1994; 6
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
Ungerleider LG (e_1_2_8_67_1) 1982
Burton H (e_1_2_8_10_1) 1984
e_1_2_8_5_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
Moore CI (e_1_2_8_44_1) 2002
e_1_2_8_45_1
Farah MJ (e_1_2_8_21_1) 1980
e_1_2_8_62_1
Talairach J (e_1_2_8_64_1) 1988
e_1_2_8_60_1
Mazziotta JC (e_1_2_8_41_1) 1983; 2
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Bonda E (e_1_2_8_7_1) 1996; 75
Klatzky RL (e_1_2_8_33_1) 1987
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
Evans AC (e_1_2_8_19_1) 1993
e_1_2_8_27_1
e_1_2_8_69_1
Sinclair RJ (e_1_2_8_63_1) 1993; 70
e_1_2_8_2_1
e_1_2_8_4_1
Kaas JH (e_1_2_8_31_1) 1988
Passingham RE (e_1_2_8_48_1) 1996; 70
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_23_1
e_1_2_8_65_1
Roland PE (e_1_2_8_56_1) 1993
e_1_2_8_40_1
Servos P (e_1_2_8_61_1) 2001; 24
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
Mellet E (e_1_2_8_42_1) 1996; 16
Brett M (e_1_2_8_9_1) 2002; 16
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – reference: Penfield W, Jasper H (1954): Epilepsy and the functional anatomy of the human brain. Boston, MA: Little, Brown and Co.
– reference: Kerst SM, Howard JH Jr (1978): Memory psychophysics for visual area and length. Mem Cogn 6: 327-335.
– reference: James TW, Humphrey GK, Gati JS, Servos P, Menon RS, Goodale MA (2002): Haptic study of three-dimensional objects activates extrastriate visual areas. Neuropsychologia 40: 1706-1714.
– reference: Jones EG, Powell TP (1970): An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93: 793-820.
– reference: Sinclair RJ, Burton H (1993): Neuronal activity in the second somatosensory cortex of monkeys (Macaca mulatta) during active touch of gratings. J Neurophysiol 70: 331-350.
– reference: Platz T (1996): Tactile agnosia. Casuistic evidence and theoretical remarks on modality-specific meaning representations and sensorimotor integration. Brain 119: 1565-1574.
– reference: Amedi A, Malach R, Hendler T, Peled S, Zohary E (2001): Visuohaptic object-related activation in the ventral visual pathway. Nat Neurosci 4: 324-330.
– reference: Moore CI, Crosier E, Greve DN, Savoy R, Merzenich MM, Dale AM (2002): Cortical correlates of vibrotactile detection in humans. San Francisco: Cognitive Neuroscience Society.
– reference: Burton H, Videen TO, Raichle ME (1993): Tactile-vibration-activated foci in insular and parietal-opercular cortex studied with positron emission tomography mapping the second somatosensory area in humans. Somatosens Mot Res 10: 297-308.
– reference: Klatzky RL, Lederman SJ, Reed CL (1987): There's more to touch than meets the eye: the salience of object attributes for haptics with and without vision. J Exp Psychol Gen 116: 356-369.
– reference: Reed CL, Caselli RJ (1994): The nature of tactile agnosia: a case study. Neuropsychologia 32: 527-539.
– reference: Corkin S, Milner B, Rasmussen T (1970): Somatosensory thresholds-contrasting effects of postcentral-gyrus and posterior parietal-lobe excisions. Arch Neurol 23: 41-58.
– reference: Garcha H, Ettlinger G (1980): Tactile discrimination learning in the monkey: the effects of unilateral or bilateral removals of the second somatosensory cortex (area SII). Cortex 16: 397-412.
– reference: Roland PE (1993): Brain activation. New York: John Wiley and Sons.
– reference: Norrsell U (1978): Sensory defects caused by lesions of the first (SI) and second (SII) somatosensory areas of the dog. Exp Brain Res 32: 181-195.
– reference: Robinson CJ, Burton H (1980): Organization of somatosensory receptive fields in cortical areas 7b, retroinsula, postauditory and granular insula of M. fascicularis. J Comp Neurol 192: 69-92.
– reference: Mazziotta JC, Phelps ME, Halgren E (1983): Local cerebral glucose metabolic response to audiovisual stimulation and deprivation: studies in human subjects with positron CT. Hum Neurobiol 2: 11-23.
– reference: Amedi A, Jacobson G, Hendler T, Malach R, Zohary E (2002): Convergence of visual and tactile shape processing in the human lateral occipital complex. Cereb Cortex 12: 1202-1212.
– reference: Binkofski F, Buccino G, Posse S, Seitz RJ, Rizzolatti G, Freund H (1999a): Fronto-parietal circuit for object manipulation in man: evidence from an fMRI study. Eur J Neurosci 11: 3276-3286.
– reference: Zhou YD, Fuster JM (2000): Visuo-tactile cross-modal associations in cortical somatosensory cells. Proc Natl Acad Sci USA 97: 9777-9782.
– reference: Klein I, Paradis AL, Poline JB, Kosslyn SM, Bihan DL (2000): Transient activity in the human calcarine cortex during visual-mental imagery: an event-related fMRI study. J Cogn Neurosci 12: 15-23.
– reference: Anton JL, Benali H, Guigon E, Di Paola M, Bittoun J, Jolivet O, Burnod Y (1996): Functional MR imaging of the human sensorimotor cortex during haptic discrimination. Neuroreport 7: 2849-2852.
– reference: Klatzky RL, Lederman S, Metzger V (1985): Identifying objects by touch: an "expert system." Percept Psychophys 37: 299-302.
– reference: Reed CL, Dale AM, Dhond RP, Post D, Paulson K, Halgren E (2000): Activation of ventrolateral somatosensory cortex for tactile pattern discrimination using MEG. Neuroimage 11: S688.
– reference: Klatzky RL, Lederman SJ (1992): Stages of manual exploration in haptic object identification. Percept Psychophys 52: 661-670.
– reference: Mishkin M (1979): Analogous neural models for tactual and visual learning. Neuropsychologia 17: 139-150.
– reference: Tootell RB, Hadjikhani NK, Mendola JD, Marrett S, Dale AM (1998): From retinotopy to recognition: fMRI in human visual cortex. Trends Cogn Sci 2: 174-183.
– reference: Reed CL, Caselli RJ, Farah MJ (1996): Tactile agnosia. Underlying impairment and implications for normal tactile object recognition. Brain 119: 875-888.
– reference: Murray EA, Mishkin M (1984): Relative contributions of SII and area 5 to tactile discrimination in monkeys. Behav Brain Res 11: 67-83.
– reference: Friston KJ, Holmes AP, Price CJ, Buchel C, Worsley KJ (1999): Multisubject fMRI studies and conjunction analyses. Neuroimage 10: 385-396.
– reference: Shulman GL, Fiez JA, Corbetta M, Buckner RL, Miezin FM, Raichle ME, Petersen SE (1997): Common blood flow changes across visual tasks. II: Decreases in cerebral cortex. J Cogn Neurosci 9: 648-663.
– reference: Mellet E, Tzourio N, Crivello F, Joliot M, Denis M, Mazoyer B (1996): Functional anatomy of spatial mental imagery generated from verbal instructions. J Neurosci 16: 6504-6512.
– reference: O'Sullivan BT, Roland PE, Kawashima R (1994): A PET study of somatosensory discrimination in man: microgeometry versus macrogeometry. Eur J Neurosci 6: 137-148.
– reference: Chen W, Toshinoir K, Xio-Hong Z, Ogawa S, Tank DW, Ugurbil K (1998): Human primary visual cortex and lateral geniculate nucleus activation during visual imagery. Neuroreport 9: 3669-3674.
– reference: Farah MJ (1980): Visual agnosia. Cambridge, MA: MIT Press.
– reference: Brett M, Anton JL, Valabregue R, Poline JB (2002): Region of interest analysis using an SPM toolbox [abstract]. Presented at the 8th International Conference on Functional Mapping of the Human Brain, June 2-6, 2002, Sendai, Japan. Neuroimage 16: 497A.
– reference: Lüders H, Lesser RP, Dinner DS, Hahn JF, Salanga V, Morris HH (1985): The second sensory area in humans, evoked potentials and electrical stimulation studies. Ann Neurol 17: 177-184.
– reference: Servos P, Lederman S, Wilson D, Gati J (2001): fMRI-derived cortical maps for shape, roughness, and hardness. Soc Neurosci Abstr:24.
– reference: Krubitzer L, Clarey J, Tweedale R, Elston G, Calford M (1995): A redefinition of somatosensory areas in the lateral sulcus of macaque monkeys. J Neurosci 15: 3821-3839.
– reference: Semmes J (1965): A non-tactual factor in astereognosis. Neuropsychologia 3: 295-315.
– reference: Caselli RJ (1991): Rediscovering tactile agnosia. Mayo Clin Proc 66: 129-142.
– reference: Evans AC, Collins DL, Mills SR, Brown ED, Kelly RL, Peters TM (1993): 3-D statistical neuroanatomical models from 305 MRI volumes. In: Proceedings IEEE-Nuclear Science Symposium and Medical Imaging Conference. Piscataway, NJ: IEEE Inc. p 1813-1817.
– reference: Reales JM, Ballesteros S (1999): Implicit and explicit memory for visual and haptic objects: Cross-modal priming depends on structural descriptions. J Exp Psychol Learn Mem Cogn 25: 644-663.
– reference: Lin W, Kuppusamy K, Haacke EM, Burton H (1996): Functional MRI in human somatosensory cortex activated by touching textured surfaces. J Magn Reson Imaging 6: 565-572.
– reference: Passingham RE (1996): Functional specialization of the supplementary motor area in monkeys and humans. Adv Neurol 70: 105-116.
– reference: Roland PE, O'Sullivan B, Kawashima R (1998): Shape and roughness activate different somatosensory areas in the human brain. Proc Natl Acad Sci USA 95: 3295-3300.
– reference: Easton RD, Srinivas K, Greene AJ (1997): Do vision and haptics share common representations? Implicit and explicit memory within and between modalities. J Exp Psychol Learn Mem Cogn 23: 153-163.
– reference: Binkofski F, Buccino G, Stephan KM, Rizzolatti G, Seitz RJ, Freund HJ (1999b): A parieto-premotor network for object manipulation: evidence from neuroimaging. Exp Brain Res 128: 210-213.
– reference: Deibert E, Kraut M, Kremen S, Hart J (1999): Neural pathways in tactile object recognition. Neurology 52: 1413-1417.
– reference: Sathian K, Zangaladze A, Hoffman JM, Grafton ST (1997): Feeling with the mind's eye. Neuroreport 8: 3877-3881.
– reference: Ginsburg MD, Yoshii F, Vibulsresth S, Chang JY, Duara R, Barker WW, Boothe TE (1987): Human task-specific somatosensory activation. Neurology 37: 1301-1308.
– reference: Bonda E, Petrides M, Evans A (1996): Neural systems for tactual memories. J Neurophysiol 75: 1730-1737.
– reference: Caselli RJ (1993): Ventrolateral and dorsomedial somatosensory association cortex damage produces distinct somesthetic syndromes in humans. Neurology 43: 762-771.
– reference: Halgren E, Dale AM, Sereno MI, Tootell RB, Marinkovic K, Rosen BR (1999): Location of human face-selective cortex with respect to retinotopic areas. Hum Brain Mapp 7: 29-37.
– reference: Friston KJ, Ashburner J, Poline JB, Frith CD, Heather JD, Frackowiak RS (1995a): Spatial registration and normalization of images. Hum Brain Mapp 2: 165-189.
– reference: Friston KJ, Holmes AP, Worsley KJ, Poline JB, Frith CD, Frackowiak RS (1995b): Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 2: 189-210.
– reference: Sadato N, Pascual-Leone A, Grafman J, Ibanez V, Deiber MP, Dold G, Hallett M (1996): Activation of the primary visual cortex by Braille reading in blind subjects. Nature 380: 526-528.
– reference: Zangaladze A, Epstein CM, Grafton ST, Sathian K (1999): Involvement of visual cortex in tactile discrimination of orientation. Nature 401: 587-590.
– reference: Friedman DP, Murray EA, O'Neill JB, Mishkin M (1986): Cortical connections of the somatosensory fields of the lateral sulcus of macaques: evidence of a corticolimbic pathway for touch. J Comp Neurol 252: 323-347.
– reference: Bushnell EW, Baxt C (1999): Children's haptic and cross-modal recognition with familiar and unfamiliar objects. J Exp Psychol Hum Percept Perform 25: 1867-1881.
– reference: Talairach J, Tournoux P (1988): Co-planar stereotaxic atlas of the human brain. New York: Thieme.
– volume: 52
  start-page: 661
  year: 1992
  end-page: 670
  article-title: Stages of manual exploration in haptic object identification
  publication-title: Percept Psychophys
– volume: 4
  year: 1988
– volume: 21
  start-page: 121
  year: 1987
  end-page: 151
– volume: 43
  start-page: 762
  year: 1993
  end-page: 771
  article-title: Ventrolateral and dorsomedial somatosensory association cortex damage produces distinct somesthetic syndromes in humans
  publication-title: Neurology
– volume: 17
  start-page: 139
  year: 1979
  end-page: 150
  article-title: Analogous neural models for tactual and visual learning
  publication-title: Neuropsychologia
– start-page: 549
  year: 1982
  end-page: 586
– volume: 93
  start-page: 793
  year: 1970
  end-page: 820
  article-title: An anatomical study of converging sensory pathways within the cerebral cortex of the monkey
  publication-title: Brain
– volume: 11
  start-page: 3276
  year: 1999a
  end-page: 3286
  article-title: Fronto‐parietal circuit for object manipulation in man: evidence from an fMRI study
  publication-title: Eur J Neurosci
– volume: 2
  start-page: 165
  year: 1995a
  end-page: 189
  article-title: Spatial registration and normalization of images
  publication-title: Hum Brain Mapp
– volume: 3
  start-page: 295
  year: 1965
  end-page: 315
  article-title: A non‐tactual factor in astereognosis
  publication-title: Neuropsychologia
– volume: 9
  start-page: 3669
  year: 1998
  end-page: 3674
  article-title: Human primary visual cortex and lateral geniculate nucleus activation during visual imagery
  publication-title: Neuroreport
– volume: 32
  start-page: 527
  year: 1994
  end-page: 539
  article-title: The nature of tactile agnosia: a case study
  publication-title: Neuropsychologia
– volume: 119
  start-page: 1565
  year: 1996
  end-page: 1574
  article-title: Tactile agnosia. Casuistic evidence and theoretical remarks on modality‐specific meaning representations and sensorimotor integration
  publication-title: Brain
– volume: 192
  start-page: 69
  year: 1980
  end-page: 92
  article-title: Organization of somatosensory receptive fields in cortical areas 7b, retroinsula, postauditory and granular insula of M. fascicularis
  publication-title: J Comp Neurol
– volume: 2
  start-page: 11
  year: 1983
  end-page: 23
  article-title: Local cerebral glucose metabolic response to audiovisual stimulation and deprivation: studies in human subjects with positron CT
  publication-title: Hum Neurobiol
– volume: 32
  start-page: 181
  year: 1978
  end-page: 195
  article-title: Sensory defects caused by lesions of the first (SI) and second (SII) somatosensory areas of the dog
  publication-title: Exp Brain Res
– volume: 5
  start-page: 31
  year: 1984
  end-page: 98
– volume: 16
  start-page: 497A
  year: 2002
  article-title: Region of interest analysis using an SPM toolbox
  publication-title: Neuroimage
– volume: 40
  start-page: 1706
  year: 2002
  end-page: 1714
  article-title: Haptic study of three‐dimensional objects activates extrastriate visual areas
  publication-title: Neuropsychologia
– volume: 25
  start-page: 644
  year: 1999
  end-page: 663
  article-title: Implicit and explicit memory for visual and haptic objects: Cross‐modal priming depends on structural descriptions
  publication-title: J Exp Psychol Learn Mem Cogn
– volume: 23
  start-page: 41
  year: 1970
  end-page: 58
  article-title: Somatosensory thresholds—contrasting effects of postcentral‐gyrus and posterior parietal‐lobe excisions
  publication-title: Arch Neurol
– volume: 6
  start-page: 565
  year: 1996
  end-page: 572
  article-title: Functional MRI in human somatosensory cortex activated by touching textured surfaces
  publication-title: J Magn Reson Imaging
– volume: 70
  start-page: 105
  year: 1996
  end-page: 116
  article-title: Functional specialization of the supplementary motor area in monkeys and humans
  publication-title: Adv Neurol
– volume: 95
  start-page: 3295
  year: 1998
  end-page: 3300
  article-title: Shape and roughness activate different somatosensory areas in the human brain
  publication-title: Proc Natl Acad Sci USA
– volume: 37
  start-page: 1301
  year: 1987
  end-page: 1308
  article-title: Human task‐specific somatosensory activation
  publication-title: Neurology
– volume: 97
  start-page: 9777
  year: 2000
  end-page: 9782
  article-title: Visuo‐tactile cross‐modal associations in cortical somatosensory cells
  publication-title: Proc Natl Acad Sci USA
– volume: 128
  start-page: 210
  year: 1999b
  end-page: 213
  article-title: A parieto‐premotor network for object manipulation: evidence from neuroimaging
  publication-title: Exp Brain Res
– start-page: 1813
  year: 1993
  end-page: 1817
– volume: 8
  start-page: 3877
  year: 1997
  end-page: 3881
  article-title: Feeling with the mind's eye
  publication-title: Neuroreport
– volume: 380
  start-page: 526
  year: 1996
  end-page: 528
  article-title: Activation of the primary visual cortex by Braille reading in blind subjects
  publication-title: Nature
– year: 1993
– start-page: 535
  year: 2000
  end-page: 560
– volume: 9
  start-page: 648
  year: 1997
  end-page: 663
  article-title: Common blood flow changes across visual tasks. II: Decreases in cerebral cortex
  publication-title: J Cogn Neurosci
– volume: 23
  start-page: 153
  year: 1997
  end-page: 163
  article-title: Do vision and haptics share common representations? Implicit and explicit memory within and between modalities
  publication-title: J Exp Psychol Learn Mem Cogn
– volume: 6
  start-page: 327
  year: 1978
  end-page: 335
  article-title: Memory psychophysics for visual area and length
  publication-title: Mem Cogn
– volume: 116
  start-page: 356
  year: 1987
  end-page: 369
  article-title: There's more to touch than meets the eye: the salience of object attributes for haptics with and without vision
  publication-title: J Exp Psychol Gen
– volume: 75
  start-page: 1730
  year: 1996
  end-page: 1737
  article-title: Neural systems for tactual memories
  publication-title: J Neurophysiol
– volume: 16
  start-page: 6504
  year: 1996
  end-page: 6512
  article-title: Functional anatomy of spatial mental imagery generated from verbal instructions
  publication-title: J Neurosci
– volume: 16
  start-page: 397
  year: 1980
  end-page: 412
  article-title: Tactile discrimination learning in the monkey: the effects of unilateral or bilateral removals of the second somatosensory cortex (area SII)
  publication-title: Cortex
– volume: 24
  year: 2001
  article-title: fMRI‐derived cortical maps for shape, roughness, and hardness
  publication-title: Soc Neurosci Abstr
– volume: 12
  start-page: 1202
  year: 2002
  end-page: 1212
  article-title: Convergence of visual and tactile shape processing in the human lateral occipital complex
  publication-title: Cereb Cortex
– volume: 252
  start-page: 323
  year: 1986
  end-page: 347
  article-title: Cortical connections of the somatosensory fields of the lateral sulcus of macaques: evidence of a corticolimbic pathway for touch
  publication-title: J Comp Neurol
– volume: 2
  start-page: 189
  year: 1995b
  end-page: 210
  article-title: Statistical parametric maps in functional imaging: a general linear approach
  publication-title: Hum Brain Mapp
– volume: 17
  start-page: 177
  year: 1985
  end-page: 184
  article-title: The second sensory area in humans, evoked potentials and electrical stimulation studies
  publication-title: Ann Neurol
– volume: 15
  start-page: 3821
  year: 1995
  end-page: 3839
  article-title: A redefinition of somatosensory areas in the lateral sulcus of macaque monkeys
  publication-title: J Neurosci
– year: 1954
– volume: 11
  start-page: S688
  year: 2000
  article-title: Activation of ventrolateral somatosensory cortex for tactile pattern discrimination using MEG
  publication-title: Neuroimage
– volume: 37
  start-page: 299
  year: 1985
  end-page: 302
  article-title: Identifying objects by touch: an “expert system.”
  publication-title: Percept Psychophys
– volume: 401
  start-page: 587
  year: 1999
  end-page: 590
  article-title: Involvement of visual cortex in tactile discrimination of orientation
  publication-title: Nature
– volume: 119
  start-page: 875
  year: 1996
  end-page: 888
  article-title: Tactile agnosia. Underlying impairment and implications for normal tactile object recognition
  publication-title: Brain
– volume: 264
  start-page: 263
  year: 1994
  end-page: 274
– volume: 10
  start-page: 385
  year: 1999
  end-page: 396
  article-title: Multisubject fMRI studies and conjunction analyses
  publication-title: Neuroimage
– volume: 12
  start-page: 15
  year: 2000
  end-page: 23
  article-title: Transient activity in the human calcarine cortex during visual‐mental imagery: an event‐related fMRI study
  publication-title: J Cogn Neurosci
– volume: 2
  start-page: 174
  year: 1998
  end-page: 183
  article-title: From retinotopy to recognition: fMRI in human visual cortex
  publication-title: Trends Cogn Sci
– volume: 4
  start-page: 324
  year: 2001
  end-page: 330
  article-title: Visuohaptic object‐related activation in the ventral visual pathway
  publication-title: Nat Neurosci
– volume: 6
  start-page: 137
  year: 1994
  end-page: 148
  article-title: A PET study of somatosensory discrimination in man: microgeometry versus macrogeometry
  publication-title: Eur J Neurosci
– volume: 52
  start-page: 1413
  year: 1999
  end-page: 1417
  article-title: Neural pathways in tactile object recognition
  publication-title: Neurology
– volume: 10
  start-page: 297
  year: 1993
  end-page: 308
  article-title: Tactile‐vibration‐activated foci in insular and parietal‐opercular cortex studied with positron emission tomography mapping the second somatosensory area in humans
  publication-title: Somatosens Mot Res
– year: 1980
– volume: 66
  start-page: 129
  year: 1991
  end-page: 142
  article-title: Rediscovering tactile agnosia
  publication-title: Mayo Clin Proc
– volume: 11
  start-page: 67
  year: 1984
  end-page: 83
  article-title: Relative contributions of SII and area 5 to tactile discrimination in monkeys
  publication-title: Behav Brain Res
– volume: 70
  start-page: 331
  year: 1993
  end-page: 350
  article-title: Neuronal activity in the second somatosensory cortex of monkeys ( ) during active touch of gratings
  publication-title: J Neurophysiol
– year: 2002
– year: 1988
– volume: 7
  start-page: 29
  year: 1999
  end-page: 37
  article-title: Location of human face‐selective cortex with respect to retinotopic areas
  publication-title: Hum Brain Mapp
– volume: 7
  start-page: 2849
  year: 1996
  end-page: 2852
  article-title: Functional MR imaging of the human sensorimotor cortex during haptic discrimination
  publication-title: Neuroreport
– volume: 25
  start-page: 1867
  year: 1999
  end-page: 1881
  article-title: Children's haptic and cross‐modal recognition with familiar and unfamiliar objects
  publication-title: J Exp Psychol Hum Percept Perform
– year: 1999
– ident: e_1_2_8_65_1
  doi: 10.1016/B978-012692545-6/50020-9
– ident: e_1_2_8_26_1
  doi: 10.1016/S0010-9452(80)80041-4
– ident: e_1_2_8_16_1
  doi: 10.1001/archneur.1970.00480250045007
– ident: e_1_2_8_20_1
  doi: 10.1007/978-1-4615-2546-2_48
– ident: e_1_2_8_52_1
  doi: 10.1016/0028-3932(94)90142-2
– ident: e_1_2_8_66_1
  doi: 10.1016/S1364-6613(98)01171-1
– ident: e_1_2_8_2_1
  doi: 10.1038/85201
– ident: e_1_2_8_58_1
  doi: 10.1038/380526a0
– ident: e_1_2_8_68_1
  doi: 10.1038/44139
– ident: e_1_2_8_59_1
  doi: 10.1097/00001756-199712220-00008
– ident: e_1_2_8_60_1
  doi: 10.1016/0028-3932(65)90004-7
– ident: e_1_2_8_14_1
  doi: 10.1212/WNL.43.4.762
– volume: 75
  start-page: 1730
  year: 1996
  ident: e_1_2_8_7_1
  article-title: Neural systems for tactual memories
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1996.75.4.1730
– ident: e_1_2_8_32_1
  doi: 10.3758/BF03197463
– ident: e_1_2_8_62_1
  doi: 10.1162/jocn.1997.9.5.648
– ident: e_1_2_8_35_1
  doi: 10.1037/0096-3445.116.4.356
– volume: 70
  start-page: 331
  year: 1993
  ident: e_1_2_8_63_1
  article-title: Neuronal activity in the second somatosensory cortex of monkeys (Macaca mulatta) during active touch of gratings
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1993.70.1.331
– ident: e_1_2_8_6_1
  doi: 10.1007/s002210050838
– volume-title: Co‐planar stereotaxic atlas of the human brain
  year: 1988
  ident: e_1_2_8_64_1
– volume: 24
  year: 2001
  ident: e_1_2_8_61_1
  article-title: fMRI‐derived cortical maps for shape, roughness, and hardness
  publication-title: Soc Neurosci Abstr
– ident: e_1_2_8_11_1
  doi: 10.3109/08990229309028839
– ident: e_1_2_8_4_1
  doi: 10.1097/00001756-199611250-00008
– volume: 16
  start-page: 6504
  year: 1996
  ident: e_1_2_8_42_1
  article-title: Functional anatomy of spatial mental imagery generated from verbal instructions
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.16-20-06504.1996
– ident: e_1_2_8_49_1
  doi: 10.1097/00007611-195407000-00024
– ident: e_1_2_8_43_1
  doi: 10.1016/0028-3932(79)90005-8
– ident: e_1_2_8_69_1
  doi: 10.1073/pnas.97.17.9777
– ident: e_1_2_8_17_1
  doi: 10.1212/WNL.52.7.1413
– volume: 16
  start-page: 497A
  year: 2002
  ident: e_1_2_8_9_1
  article-title: Region of interest analysis using an SPM toolbox
  publication-title: Neuroimage
– year: 1988
  ident: e_1_2_8_31_1
– ident: e_1_2_8_3_1
  doi: 10.1093/cercor/12.11.1202
– ident: e_1_2_8_50_1
  doi: 10.1093/brain/119.5.1565
– ident: e_1_2_8_25_1
  doi: 10.1006/nimg.1999.0484
– ident: e_1_2_8_24_1
  doi: 10.1002/hbm.460020402
– ident: e_1_2_8_34_1
  doi: 10.3758/BF03211351
– ident: e_1_2_8_47_1
  doi: 10.1111/j.1460-9568.1994.tb00255.x
– ident: e_1_2_8_46_1
  doi: 10.1007/BF00239726
– ident: e_1_2_8_54_1
  doi: 10.1016/S1053-8119(00)91618-5
– ident: e_1_2_8_55_1
  doi: 10.1002/cne.901920105
– ident: e_1_2_8_40_1
  doi: 10.1002/ana.410170212
– volume-title: Brain activation
  year: 1993
  ident: e_1_2_8_56_1
– ident: e_1_2_8_29_1
  doi: 10.1016/S0028-3932(02)00017-9
– ident: e_1_2_8_23_1
  doi: 10.1002/hbm.460030303
– ident: e_1_2_8_36_1
  doi: 10.3758/BF03211702
– ident: e_1_2_8_12_1
  doi: 10.1037/0096-1523.25.6.1867
– ident: e_1_2_8_15_1
  doi: 10.1097/00001756-199811160-00019
– ident: e_1_2_8_18_1
  doi: 10.1037/0278-7393.23.1.153
– ident: e_1_2_8_53_1
  doi: 10.1093/brain/119.3.875
– ident: e_1_2_8_39_1
  doi: 10.1002/jmri.1880060402
– volume: 2
  start-page: 11
  year: 1983
  ident: e_1_2_8_41_1
  article-title: Local cerebral glucose metabolic response to audiovisual stimulation and deprivation: studies in human subjects with positron CT
  publication-title: Hum Neurobiol
– start-page: 1813
  volume-title: 3‐D statistical neuroanatomical models from 305 MRI volumes
  year: 1993
  ident: e_1_2_8_19_1
– ident: e_1_2_8_37_1
  doi: 10.1162/089892900564037
– start-page: 31
  volume-title: Sensory‐motor areas and aspects of cortical connectivity
  year: 1984
  ident: e_1_2_8_10_1
– ident: e_1_2_8_27_1
  doi: 10.1212/WNL.37.8.1301
– start-page: 549
  volume-title: Analysis of visual behavior
  year: 1982
  ident: e_1_2_8_67_1
– start-page: 121
  year: 1987
  ident: e_1_2_8_33_1
– ident: e_1_2_8_38_1
  doi: 10.1523/JNEUROSCI.15-05-03821.1995
– ident: e_1_2_8_22_1
  doi: 10.1002/cne.902520304
– ident: e_1_2_8_8_1
– ident: e_1_2_8_30_1
  doi: 10.1093/brain/93.4.793
– ident: e_1_2_8_28_1
  doi: 10.1002/(SICI)1097-0193(1999)7:1<29::AID-HBM3>3.0.CO;2-R
– volume-title: Visual agnosia
  year: 1980
  ident: e_1_2_8_21_1
– ident: e_1_2_8_13_1
  doi: 10.1016/S0025-6196(12)60484-4
– ident: e_1_2_8_51_1
  doi: 10.1037/0278-7393.25.3.644
– ident: e_1_2_8_57_1
  doi: 10.1073/pnas.95.6.3295
– volume: 70
  start-page: 105
  year: 1996
  ident: e_1_2_8_48_1
  article-title: Functional specialization of the supplementary motor area in monkeys and humans
  publication-title: Adv Neurol
– volume-title: Cortical correlates of vibrotactile detection in humans
  year: 2002
  ident: e_1_2_8_44_1
– ident: e_1_2_8_45_1
  doi: 10.1016/0166-4328(84)90009-3
– ident: e_1_2_8_5_1
  doi: 10.1046/j.1460-9568.1999.00753.x
SSID ssj0011501
Score 2.2120104
Snippet A functional magnetic resonance imaging (fMRI) study was conducted during which seven subjects carried out naturalistic tactile object recognition (TOR) of...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 236
SubjectTerms Adult
Attention - physiology
Biological and medical sciences
Brain Mapping
fMRI
haptic
human
Humans
Investigative techniques, diagnostic techniques (general aspects)
Magnetic Resonance Imaging
Male
Medical sciences
Nervous system
object recognition
Radiodiagnosis. Nmr imagery. Nmr spectrometry
Recognition (Psychology) - physiology
second somatosensory cortex
somatosensory
somatosensory cortex
Somatosensory Cortex - physiology
tactile
touch
Touch - physiology
Title Neural substrates of tactile object recognition: An fMRI study
URI https://api.istex.fr/ark:/67375/WNG-CTFTWS1X-8/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.10162
https://www.ncbi.nlm.nih.gov/pubmed/15038005
https://www.proquest.com/docview/20471401
https://www.proquest.com/docview/71744459
https://pubmed.ncbi.nlm.nih.gov/PMC6871926
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEB5KBfFFa6s2ttZFpPiSNj92N5cWhLN4nsL1oV7pPQhhd7Oh0jaR5g6sf70zm0uupy2Ib4FMFnYyO_vN7rffAryNCsQcQWh8rgvhc6FiX8dJ7guDVU9U2JRrWtAfHcvhKf8yEZMVOGzPwjT6EN2CG40Ml69pgCtd7y9EQ8_1lSs9Kf8SV4sA0UknHUVAxxVbOMX6KWbgVlUoiPa7L5fmogfk1p_EjVQ1uqdo7rW4C3j-zZ-8jWvdxDR4At_aLjV8lIu92VTvmV9_qD3-Z5_X4PEcsLJ-E2FPYcWW67DRL7FYv7phu8xRSN3a_Do8HM136jfgPal-4Hc1JiYngFuzqmBTOkZxaVmlafmHdeylqjxg_ZIVo5PPzAnePoPTwcfx0dCf39XgG6xYMKmaVAole5FWRc9InAK1CUUS6iAvQjpxn9rASK5CExfWKindDWe5tTKNBOaM-DmsllVpN4GpOMaw4krIRHFuhZYmzhHW5coimJKJB-_av5aZuZA53adxmTUSzFGGbnLUtciDN53pj0a94y6jXffrOwt1fUF0t0RkZ8efsqPxYHz2NZxkPQ92lmJj0SSVZQiUPHjdBkuGo5S2XlRpq1mdRQEnZcTwfgssqznnIvXgRRNct1oPYoT1woNkKew6A1IIX35Tfj93SuESy-E0kugxF1X3-yAbfhi5h5f_broFjxY0pm1YnV7P7CtEaFO944bib3r-NdQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8hkLa9bAz2kX2ANU1oL4F82E4zoUkdW1c20gdWRF-QZTuOmIBkoq208ddzdpqUbiBNe4uUiyVfzuffnc-_A3gbFYg5glD7VBXMp0zGvoqT3Gcao56oMClVNqGfDXj_iH4dsdES7DZ3YWp-iDbhZleG89d2gduE9M6cNfRUXbjYEx3wiu3obfsXfDpsyaMs1HHhFm6yfoo-uOEVCqKd9tOF3WjFKvaXrY6UY1RQUXe2uA16_l1BeRPZuq2p9whOmknVFSln29OJ2tZXf_A9_u-sV-HhDLOSbm1kj2HJlGuw3i0xXr_4TbaIqyJ16fk1uJfNDuvX4YMl_sDvxuibHAfumFQFmdibFOeGVMpmgEhbwFSV70m3JEV2uE8c5-0TOOp9Hu71_Vm7Bl9j0IJ-VaecSd6JlCw6muMuqHTIklAFeRHaS_epCTSnMtRxYYzk3DU5y43hacTQbcRPYbmsSvMciIxjtCwqGU8kpYYpruMckV0uDeIpnnjwrvltQs-4zG1LjXNRszBHAtXkqtciD960oj9rAo_bhLbcv28l5OWZrXhLmDgefBF7w97w-Hs4Eh0PNhaMYz6kjcwQK3mw2ViLwIVqT19kaarpWEQBteSI4d0SGFlTSlnqwbPaum6MHsSI7JkHyYLdtQKWJHzxTfnj1JGFc4yI04ijxpxZ3a0D0f-YuYcX_y66Cff7w-xAHOwPvr2EB_OqplewPLmcmtcI2CZqw63La67lOe4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3raxQxEB9KC8UvPlof66MNIsUv2-4jyd4qCGf1vKp3SL3S-yCEJJtQabtbeneg_vVOsrd7PW1B_Lawk0AmM5PfJJNfAF4kFjFHFOuQKstCymQaqjQrQqYx60msyalyG_qDIe8f0Y9jNl6B181dmJofot1wc57h47Vz8IvC7i1IQ0_UuU89Mf6uUY7O4hDRYcsd5ZCOz7ZwjQ1zDMENrVCU7LVNlxajNafXH644Uk5QP7Z-2OI65Pl3AeVVYOtXpt4d-NaMqS5IOd2dTdWu_vUH3eN_Dvou3J4jVtKtTewerJhyAza7JWbr5z_JDvE1pH5zfgPWB_Oj-k1442g_sN0EI5NnwJ2QypKpu0dxZkil3P4PacuXqvIV6ZbEDg4PiGe8vQ9Hvfej_X44f6wh1JiyYFTVOWeSdxIlbUdzXAOVjlkWq6iwsbtyn5tIcypjnVpjJOf-ibPCGJ4nDING-gBWy6o0j4DINEW7opLxTFJqmOI6LRDXFdIgmuJZAC-bWRN6zmTuHtQ4EzUHcyJQTb52LQngeSt6UdN3XCe046e-lZCXp67eLWPiePhB7I96o-Ov8Vh0Athaso1Fly4vQ6QUwHZjLALd1J29yNJUs4lIIuqoEeObJTCvppSyPICHtXFd6T1KEdezALIls2sFHEX48p_y-4mnCueYD-cJR415q7pZB6L_duA_Hv-76Dasf3nXE58Php-ewK1FSdNTWJ1ezswzRGtTteW98jf4gTim
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+substrates+of+tactile+object+recognition%3A+An+fMRI+study&rft.jtitle=Human+brain+mapping&rft.au=Reed%2C+Catherine+L.&rft.au=Shoham%2C+Shy&rft.au=Halgren%2C+Eric&rft.date=2004-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=21&rft.issue=4&rft.spage=236&rft.epage=246&rft_id=info:doi/10.1002%2Fhbm.10162&rft_id=info%3Apmid%2F15038005&rft.externalDocID=PMC6871926
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon