Neural substrates of tactile object recognition: An fMRI study
A functional magnetic resonance imaging (fMRI) study was conducted during which seven subjects carried out naturalistic tactile object recognition (TOR) of real objects. Activation maps, conjunctions across subjects, were compared between tasks involving TOR of common real objects, palpation of “non...
Saved in:
Published in | Human brain mapping Vol. 21; no. 4; pp. 236 - 246 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.04.2004
Wiley-Liss |
Subjects | |
Online Access | Get full text |
ISSN | 1065-9471 1097-0193 |
DOI | 10.1002/hbm.10162 |
Cover
Loading…
Abstract | A functional magnetic resonance imaging (fMRI) study was conducted during which seven subjects carried out naturalistic tactile object recognition (TOR) of real objects. Activation maps, conjunctions across subjects, were compared between tasks involving TOR of common real objects, palpation of “nonsense” objects, and rest. The tactile tasks involved similar motor and sensory stimulation, allowing higher tactile recognition processes to be isolated. Compared to nonsense object palpation, the most prominent activation evoked by TOR was in secondary somatosensory areas in the parietal operculum (SII) and insula, confirming a modality‐specific path for TOR. Prominent activation was also present in medial and lateral secondary motor cortices, but not in primary motor areas, supporting the high level of sensory and motor integration characteristic of object recognition in the tactile modality. Activation in a lateral occipitotemporal area associated previously with visual object recognition may support cross‐modal collateral activation. Finally, activation in medial temporal and prefrontal areas may reflect a common final pathway of modality‐independent object recognition. This study suggests that TOR involves a complex network including parietal and insular somatosensory association cortices, as well as occipitotemporal visual areas, prefrontal, and medial temporal supramodal areas, and medial and lateral secondary motor cortices. It confirms the involvement of somatosensory association areas in the recognition component of TOR, and the existence of a ventrolateral somatosensory pathway for TOR in intact subjects. It challenges the results of previous studies that emphasize the role of visual cortex rather than somatosensory association cortices in higher‐level somatosensory cognition. Hum. Brain Mapping 21:236–246, 2004. © 2004 Wiley‐Liss, Inc. |
---|---|
AbstractList | A functional magnetic resonance imaging (fMRI) study was conducted during which seven subjects carried out naturalistic tactile object recognition (TOR) of real objects. Activation maps, conjunctions across subjects, were compared between tasks involving TOR of common real objects, palpation of “nonsense” objects, and rest. The tactile tasks involved similar motor and sensory stimulation, allowing higher tactile recognition processes to be isolated. Compared to nonsense object palpation, the most prominent activation evoked by TOR was in secondary somatosensory areas in the parietal operculum (SII) and insula, confirming a modality‐specific path for TOR. Prominent activation was also present in medial and lateral secondary motor cortices, but not in primary motor areas, supporting the high level of sensory and motor integration characteristic of object recognition in the tactile modality. Activation in a lateral occipitotemporal area associated previously with visual object recognition may support cross‐modal collateral activation. Finally, activation in medial temporal and prefrontal areas may reflect a common final pathway of modality‐independent object recognition. This study suggests that TOR involves a complex network including parietal and insular somatosensory association cortices, as well as occipitotemporal visual areas, prefrontal, and medial temporal supramodal areas, and medial and lateral secondary motor cortices. It confirms the involvement of somatosensory association areas in the recognition component of TOR, and the existence of a ventrolateral somatosensory pathway for TOR in intact subjects. It challenges the results of previous studies that emphasize the role of visual cortex rather than somatosensory association cortices in higher‐level somatosensory cognition. Hum. Brain Mapping 21:236–246, 2004. © 2004 Wiley‐Liss, Inc. A functional magnetic resonance imaging (fMRI) study was conducted during which seven subjects carried out naturalistic tactile object recognition (TOR) of real objects. Activation maps, conjunctions across subjects, were compared between tasks involving TOR of common real objects, palpation of nonsense objects, and rest. The tactile tasks involved similar motor and sensory stimulation, allowing higher tactile recognition processes to be isolated. Compared to nonsense object palpation, the most prominent activation evoked by TOR was in secondary somatosensory areas in the parietal operculum (SII) and insula, confirming a modality-specific path for TOR. Prominent activation was also present in medial and lateral secondary motor cortices, but not in primary motor areas, supporting the high level of sensory and motor integration characteristic of object recognition in the tactile modality. Activation in a lateral occipitotemporal area associated previously with visual object recognition may support cross-modal collateral activation. Finally, activation in medial temporal and prefrontal areas may reflect a common final pathway of modality-independent object recognition. This study suggests that TOR involves a complex network including parietal and insular somatosensory association cortices, as well as occipitotemporal visual areas, prefrontal, and medial temporal supramodal areas, and medial and lateral secondary motor cortices. It confirms the involvement of somatosensory association areas in the recognition component of TOR, and the existence of a ventrolateral somatosensory pathway for TOR in intact subjects. It challenges the results of previous studies that emphasize the role of visual cortex rather than somatosensory association cortices in higher-level somatosensory cognition. Hum. Brain Mapping 21:236-246, 2004. A functional magnetic resonance imaging (fMRI) study was conducted during which seven subjects carried out naturalistic tactile object recognition (TOR) of real objects. Activation maps, conjunctions across subjects, were compared between tasks involving TOR of common real objects, palpation of "nonsense" objects, and rest. The tactile tasks involved similar motor and sensory stimulation, allowing higher tactile recognition processes to be isolated. Compared to nonsense object palpation, the most prominent activation evoked by TOR was in secondary somatosensory areas in the parietal operculum (SII) and insula, confirming a modality-specific path for TOR. Prominent activation was also present in medial and lateral secondary motor cortices, but not in primary motor areas, supporting the high level of sensory and motor integration characteristic of object recognition in the tactile modality. Activation in a lateral occipitotemporal area associated previously with visual object recognition may support cross-modal collateral activation. Finally, activation in medial temporal and prefrontal areas may reflect a common final pathway of modality-independent object recognition. This study suggests that TOR involves a complex network including parietal and insular somatosensory association cortices, as well as occipitotemporal visual areas, prefrontal, and medial temporal supramodal areas, and medial and lateral secondary motor cortices. It confirms the involvement of somatosensory association areas in the recognition component of TOR, and the existence of a ventrolateral somatosensory pathway for TOR in intact subjects. It challenges the results of previous studies that emphasize the role of visual cortex rather than somatosensory association cortices in higher-level somatosensory cognition. A functional magnetic resonance imaging (fMRI) study was conducted during which seven subjects carried out naturalistic tactile object recognition (TOR) of real objects. Activation maps, conjunctions across subjects, were compared between tasks involving TOR of common real objects, palpation of "nonsense" objects, and rest. The tactile tasks involved similar motor and sensory stimulation, allowing higher tactile recognition processes to be isolated. Compared to nonsense object palpation, the most prominent activation evoked by TOR was in secondary somatosensory areas in the parietal operculum (SII) and insula, confirming a modality-specific path for TOR. Prominent activation was also present in medial and lateral secondary motor cortices, but not in primary motor areas, supporting the high level of sensory and motor integration characteristic of object recognition in the tactile modality. Activation in a lateral occipitotemporal area associated previously with visual object recognition may support cross-modal collateral activation. Finally, activation in medial temporal and prefrontal areas may reflect a common final pathway of modality-independent object recognition. This study suggests that TOR involves a complex network including parietal and insular somatosensory association cortices, as well as occipitotemporal visual areas, prefrontal, and medial temporal supramodal areas, and medial and lateral secondary motor cortices. It confirms the involvement of somatosensory association areas in the recognition component of TOR, and the existence of a ventrolateral somatosensory pathway for TOR in intact subjects. It challenges the results of previous studies that emphasize the role of visual cortex rather than somatosensory association cortices in higher-level somatosensory cognition.A functional magnetic resonance imaging (fMRI) study was conducted during which seven subjects carried out naturalistic tactile object recognition (TOR) of real objects. Activation maps, conjunctions across subjects, were compared between tasks involving TOR of common real objects, palpation of "nonsense" objects, and rest. The tactile tasks involved similar motor and sensory stimulation, allowing higher tactile recognition processes to be isolated. Compared to nonsense object palpation, the most prominent activation evoked by TOR was in secondary somatosensory areas in the parietal operculum (SII) and insula, confirming a modality-specific path for TOR. Prominent activation was also present in medial and lateral secondary motor cortices, but not in primary motor areas, supporting the high level of sensory and motor integration characteristic of object recognition in the tactile modality. Activation in a lateral occipitotemporal area associated previously with visual object recognition may support cross-modal collateral activation. Finally, activation in medial temporal and prefrontal areas may reflect a common final pathway of modality-independent object recognition. This study suggests that TOR involves a complex network including parietal and insular somatosensory association cortices, as well as occipitotemporal visual areas, prefrontal, and medial temporal supramodal areas, and medial and lateral secondary motor cortices. It confirms the involvement of somatosensory association areas in the recognition component of TOR, and the existence of a ventrolateral somatosensory pathway for TOR in intact subjects. It challenges the results of previous studies that emphasize the role of visual cortex rather than somatosensory association cortices in higher-level somatosensory cognition. |
Author | Shoham, Shy Reed, Catherine L. Halgren, Eric |
AuthorAffiliation | 2 Department of Molecular Biology, Princeton University, Princeton, New Jersey 3 Department of Radiology, Harvard Medical School, Boston, Massachusetts 1 Department of Psychology, University of Denver, Denver, Colorado |
AuthorAffiliation_xml | – name: 1 Department of Psychology, University of Denver, Denver, Colorado – name: 3 Department of Radiology, Harvard Medical School, Boston, Massachusetts – name: 2 Department of Molecular Biology, Princeton University, Princeton, New Jersey |
Author_xml | – sequence: 1 givenname: Catherine L. surname: Reed fullname: Reed, Catherine L. email: creed@du.edu organization: Department of Psychology, University of Denver, Denver, Colorado – sequence: 2 givenname: Shy surname: Shoham fullname: Shoham, Shy organization: Department of Molecular Biology, Princeton University, Princeton, New Jersey – sequence: 3 givenname: Eric surname: Halgren fullname: Halgren, Eric organization: Department of Radiology, Harvard Medical School, Boston, Massachusetts |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15597124$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/15038005$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1v1DAQxS1URD_gwD-AcgGJQ-hMEtsJh0pl1S-pLRIsKjfL8U5al2xcbKew_z1edlsKEnCakfx7T8_zttnG4AZi7DnCGwQodq_aeVpQFI_YFkIjc8Cm3FjugudNJXGTbYdwDYDIAZ-wzTTKGoBvsb1zGr3uszC2IXodKWSuy6I20faUufaaTMw8GXc52Gjd8DbbH7Lu7MNJFuI4WzxljzvdB3q2njvs0-HBdHKcn74_Opnsn-aGS1HktWkE16IuWt3VRghZtwa5xBZmHULBq4bAiEqjKTsiLQTUJcKMSDQFryWUO2xv5XsztnOaGRpS2F7deDvXfqGctur3l8FeqUt3q0QtsSlEMni1NvDu60ghqrkNhvpeD-TGoCTKqqp481-wgHTPCjCBLx5Gus9yd9sEvFwDOhjdd14PxoYHHG8kFlXiXq84410InrpfCKhlvyr1q372m9jdP1hjo14Wk35t-38pvqVCF3-3Vsfvzu4U-UphQ6Tv9wrtvyghS8nVxfmRmkwPpxcf8bOqyx9XKsQJ |
CitedBy_id | crossref_primary_10_1002_hbm_22040 crossref_primary_10_1093_cercor_bhae354 crossref_primary_10_1016_j_jneumeth_2011_06_030 crossref_primary_10_1016_j_neuropsychologia_2011_01_034 crossref_primary_10_1007_s40544_022_0679_5 crossref_primary_10_1016_j_neuroimage_2007_05_052 crossref_primary_10_1002_hbm_20384 crossref_primary_10_3390_s150407913 crossref_primary_10_3389_fpsyg_2014_00636 crossref_primary_10_1093_cercor_bht252 crossref_primary_10_1068_p5504 crossref_primary_10_1101_lm_97605 crossref_primary_10_5143_JESK_2014_33_5_395 crossref_primary_10_1016_j_clinph_2021_04_005 crossref_primary_10_1016_j_heares_2009_04_022 crossref_primary_10_1080_09541440802311956 crossref_primary_10_1016_j_cogbrainres_2004_10_020 crossref_primary_10_3389_fnhum_2015_00691 crossref_primary_10_1093_cercor_bhp208 crossref_primary_10_3389_fnins_2024_1297344 crossref_primary_10_1080_1357650X_2012_701631 crossref_primary_10_1016_j_neuroimage_2007_08_026 crossref_primary_10_1016_j_cortex_2016_12_007 crossref_primary_10_1523_JNEUROSCI_0623_11_2011 crossref_primary_10_1016_j_brainres_2008_04_081 crossref_primary_10_1152_jn_00546_2015 crossref_primary_10_1016_j_neuropsychologia_2014_02_009 crossref_primary_10_1016_j_neuroimage_2015_11_058 crossref_primary_10_1093_cercor_bhv020 crossref_primary_10_1007_s11571_017_9452_2 crossref_primary_10_1007_s00221_024_06888_7 crossref_primary_10_1016_j_neubiorev_2017_01_017 crossref_primary_10_1155_2012_304045 crossref_primary_10_3389_fpsyg_2017_01787 crossref_primary_10_1016_j_bbr_2014_08_049 crossref_primary_10_1093_cercor_bhv170 crossref_primary_10_1093_cercor_bhy322 crossref_primary_10_1152_jn_00836_2014 crossref_primary_10_1016_j_jneumeth_2012_12_002 crossref_primary_10_7554_eLife_98148_3 crossref_primary_10_1016_j_nicl_2013_01_013 crossref_primary_10_7554_eLife_98148 crossref_primary_10_1007_s00429_021_02378_6 crossref_primary_10_1016_j_mri_2004_10_003 crossref_primary_10_1016_j_neuropsychologia_2008_07_027 crossref_primary_10_1097_WNR_0b013e32832c5f65 crossref_primary_10_1017_S0140525X07001598 crossref_primary_10_1016_j_neuropsychologia_2006_03_003 crossref_primary_10_1016_j_actpsy_2011_06_007 crossref_primary_10_3389_fnins_2021_588593 crossref_primary_10_1111_j_1460_9568_2005_04267_x crossref_primary_10_1038_s41598_021_03147_5 crossref_primary_10_3389_fnhum_2014_01070 crossref_primary_10_1016_j_neulet_2021_135805 crossref_primary_10_3389_fnhum_2017_00445 crossref_primary_10_1007_s11042_017_4392_8 crossref_primary_10_2147_NDT_S488059 crossref_primary_10_1016_j_brainresbull_2010_08_001 crossref_primary_10_1162_imag_a_00065 crossref_primary_10_1145_2700433 crossref_primary_10_2496_hbfr_26_253 crossref_primary_10_1016_j_neuroscience_2007_12_021 crossref_primary_10_1007_s00234_007_0354_6 crossref_primary_10_1016_j_biopsycho_2017_03_010 crossref_primary_10_1093_cercor_bhy151 crossref_primary_10_1016_j_brainres_2008_03_075 crossref_primary_10_1523_JNEUROSCI_5717_09_2010 crossref_primary_10_1016_j_neuroscience_2006_08_008 crossref_primary_10_1007_s00221_005_2396_5 crossref_primary_10_1016_j_neulet_2005_12_052 crossref_primary_10_1523_JNEUROSCI_0859_14_2015 crossref_primary_10_1093_cercor_bhae277 crossref_primary_10_1152_jn_00160_2020 crossref_primary_10_1007_s00221_008_1390_0 crossref_primary_10_1016_j_dcn_2017_02_005 crossref_primary_10_1101_lm_1028008 crossref_primary_10_1371_journal_pone_0069931 crossref_primary_10_1162_jocn_2009_21006 crossref_primary_10_1523_JNEUROSCI_1745_11_2011 crossref_primary_10_3389_fnins_2016_00460 crossref_primary_10_1016_j_cortex_2018_09_024 crossref_primary_10_1080_08927936_2017_1335115 crossref_primary_10_1017_S0140525X07001574 crossref_primary_10_1002_brb3_27 crossref_primary_10_1002_hbm_20977 crossref_primary_10_1016_j_neuroimage_2021_118510 crossref_primary_10_1152_jn_00624_2011 crossref_primary_10_1152_jn_00806_2006 crossref_primary_10_16925_in_v13i21_1725 crossref_primary_10_1016_j_heliyon_2024_e31256 crossref_primary_10_1145_1166087_1166093 crossref_primary_10_1002_hbm_20456 crossref_primary_10_1002_hbm_23845 crossref_primary_10_1101_lm_964708 crossref_primary_10_1097_WNR_0000000000001419 crossref_primary_10_1089_brain_2014_0288 crossref_primary_10_1142_S0219635209002137 crossref_primary_10_1080_13554794_2019_1694951 crossref_primary_10_1016_j_neuroimage_2014_03_013 crossref_primary_10_1371_journal_pone_0085743 crossref_primary_10_1097_WNR_0000000000000683 crossref_primary_10_1038_s42003_020_0793_8 crossref_primary_10_1111_j_1469_8986_2006_00491_x crossref_primary_10_1016_j_nicl_2015_04_005 crossref_primary_10_1016_j_neubiorev_2020_06_034 crossref_primary_10_1002_hbm_21419 crossref_primary_10_1016_j_cub_2009_04_057 crossref_primary_10_1093_cercor_bhq289 crossref_primary_10_1111_srt_13122 crossref_primary_10_1002_hbm_24764 crossref_primary_10_1016_j_neuroimage_2011_12_059 crossref_primary_10_1007_s00234_007_0239_8 crossref_primary_10_1016_j_neuropsychologia_2011_12_024 crossref_primary_10_1016_j_neuroimage_2007_01_057 crossref_primary_10_1016_j_neuropharm_2018_11_033 crossref_primary_10_1016_j_cortex_2019_01_018 crossref_primary_10_3389_fneur_2015_00211 crossref_primary_10_1016_j_neuropsychologia_2015_08_008 crossref_primary_10_1016_j_brainres_2012_03_060 crossref_primary_10_3389_fpsyg_2014_00538 crossref_primary_10_1016_j_neuropsychologia_2005_02_002 crossref_primary_10_1111_j_1469_8749_2008_03105_x crossref_primary_10_1523_JNEUROSCI_5389_05_2006 crossref_primary_10_1016_j_humov_2018_11_012 crossref_primary_10_1017_S0140525X07001392 crossref_primary_10_1162_jocn_a_00411 crossref_primary_10_1073_pnas_1400806111 crossref_primary_10_1016_j_neuroscience_2017_03_038 crossref_primary_10_1016_j_bbr_2015_06_012 crossref_primary_10_1152_jn_00177_2014 crossref_primary_10_1016_j_heliyon_2019_e03032 crossref_primary_10_1523_JNEUROSCI_1574_20_2021 crossref_primary_10_1080_17518423_2017_1338777 crossref_primary_10_1007_s00221_009_1949_4 crossref_primary_10_1016_j_cortex_2012_07_002 crossref_primary_10_1007_s00429_017_1510_3 crossref_primary_10_1016_j_bandc_2005_07_004 crossref_primary_10_1068_p5679 crossref_primary_10_1016_j_conb_2005_03_011 crossref_primary_10_1007_s10548_009_0087_4 crossref_primary_10_1016_j_neuroimage_2004_11_044 crossref_primary_10_3389_fnins_2020_00182 crossref_primary_10_1007_s00221_004_2187_4 crossref_primary_10_1093_cercor_bhm146 crossref_primary_10_1016_j_jneumeth_2006_07_020 crossref_primary_10_1162_netn_a_00050 crossref_primary_10_1109_TNSRE_2023_3312336 crossref_primary_10_3758_s13423_024_02471_x crossref_primary_10_3758_PP_70_7_1350 crossref_primary_10_1177_154193120905300117 |
Cites_doi | 10.1016/B978-012692545-6/50020-9 10.1016/S0010-9452(80)80041-4 10.1001/archneur.1970.00480250045007 10.1007/978-1-4615-2546-2_48 10.1016/0028-3932(94)90142-2 10.1016/S1364-6613(98)01171-1 10.1038/85201 10.1038/380526a0 10.1038/44139 10.1097/00001756-199712220-00008 10.1016/0028-3932(65)90004-7 10.1212/WNL.43.4.762 10.1152/jn.1996.75.4.1730 10.3758/BF03197463 10.1162/jocn.1997.9.5.648 10.1037/0096-3445.116.4.356 10.1152/jn.1993.70.1.331 10.1007/s002210050838 10.3109/08990229309028839 10.1097/00001756-199611250-00008 10.1523/JNEUROSCI.16-20-06504.1996 10.1097/00007611-195407000-00024 10.1016/0028-3932(79)90005-8 10.1073/pnas.97.17.9777 10.1212/WNL.52.7.1413 10.1093/cercor/12.11.1202 10.1093/brain/119.5.1565 10.1006/nimg.1999.0484 10.1002/hbm.460020402 10.3758/BF03211351 10.1111/j.1460-9568.1994.tb00255.x 10.1007/BF00239726 10.1016/S1053-8119(00)91618-5 10.1002/cne.901920105 10.1002/ana.410170212 10.1016/S0028-3932(02)00017-9 10.1002/hbm.460030303 10.3758/BF03211702 10.1037/0096-1523.25.6.1867 10.1097/00001756-199811160-00019 10.1037/0278-7393.23.1.153 10.1093/brain/119.3.875 10.1002/jmri.1880060402 10.1162/089892900564037 10.1212/WNL.37.8.1301 10.1523/JNEUROSCI.15-05-03821.1995 10.1002/cne.902520304 10.1093/brain/93.4.793 10.1002/(SICI)1097-0193(1999)7:1<29::AID-HBM3>3.0.CO;2-R 10.1016/S0025-6196(12)60484-4 10.1037/0278-7393.25.3.644 10.1073/pnas.95.6.3295 10.1016/0166-4328(84)90009-3 10.1046/j.1460-9568.1999.00753.x |
ContentType | Journal Article |
Copyright | Copyright © 2004 Wiley‐Liss, Inc. 2004 INIST-CNRS Copyright 2004 Wiley-Liss, Inc. |
Copyright_xml | – notice: Copyright © 2004 Wiley‐Liss, Inc. – notice: 2004 INIST-CNRS – notice: Copyright 2004 Wiley-Liss, Inc. |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM |
DOI | 10.1002/hbm.10162 |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | Neurosciences Abstracts MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
DocumentTitleAlternate | Tactile Object Recognition |
EISSN | 1097-0193 |
EndPage | 246 |
ExternalDocumentID | PMC6871926 15038005 15597124 10_1002_hbm_10162 HBM10162 ark_67375_WNG_CTFTWS1X_8 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Research Support, U.S. Gov't, P.H.S Journal Article |
GrantInformation_xml | – fundername: USPHS funderid: NS18741 – fundername: NSF funderid: IBN‐9805999 – fundername: NINDS NIH HHS grantid: R01 NS018741 – fundername: NINDS NIH HHS grantid: NS18741 – fundername: USPHS grantid: NS18741 – fundername: NSF grantid: IBN‐9805999 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAHHS AAONW AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ABUWG ACBWZ ACCFJ ACGFS ACIWK ACPOU ACPRK ACSCC ACXQS ADBBV ADEOM ADIZJ ADMGS ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CCPQU CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FYUFA G-S G.N GAKWD GNP GODZA GROUPED_DOAJ H.T H.X HBH HF~ HHY HHZ HMCUK HVGLF HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RPM RWD RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT AANHP AAYCA ACCMX ACRPL ACYXJ ADNMO AAFWJ AAYXX AFPKN AGQPQ CITATION PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM |
ID | FETCH-LOGICAL-c5762-8c965a682baf8c6678bc1571b0df102549e0c64a1c3feea6608310dee69258703 |
IEDL.DBID | DR2 |
ISSN | 1065-9471 |
IngestDate | Thu Aug 21 14:09:03 EDT 2025 Tue Aug 05 10:57:36 EDT 2025 Sun Aug 24 04:11:16 EDT 2025 Wed Feb 19 01:36:38 EST 2025 Mon Jul 21 09:15:14 EDT 2025 Tue Jul 01 04:25:50 EDT 2025 Thu Apr 24 23:03:48 EDT 2025 Wed Jan 22 17:00:30 EST 2025 Wed Oct 30 09:52:30 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Human object recognition Nervous system diseases Radiodiagnosis tactile Central nervous system touch Nuclear magnetic resonance imaging Encephalon Somatosensory cortex fMRI somatosensory Haptic perception haptic Somesthetic pathway second somatosensory cortex Recognition |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 Copyright 2004 Wiley-Liss, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5762-8c965a682baf8c6678bc1571b0df102549e0c64a1c3feea6608310dee69258703 |
Notes | ark:/67375/WNG-CTFTWS1X-8 ArticleID:HBM10162 istex:8D293E47DED9087E1580BDF7077B9C58580F5BF8 USPHS - No. NS18741 NSF - No. IBN-9805999 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.10162?download=true |
PMID | 15038005 |
PQID | 20471401 |
PQPubID | 23462 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6871926 proquest_miscellaneous_71744459 proquest_miscellaneous_20471401 pubmed_primary_15038005 pascalfrancis_primary_15597124 crossref_primary_10_1002_hbm_10162 crossref_citationtrail_10_1002_hbm_10162 wiley_primary_10_1002_hbm_10162_HBM10162 istex_primary_ark_67375_WNG_CTFTWS1X_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2004 |
PublicationDateYYYYMMDD | 2004-04-01 |
PublicationDate_xml | – month: 04 year: 2004 text: April 2004 |
PublicationDecade | 2000 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: New York, NY – name: United States |
PublicationTitle | Human brain mapping |
PublicationTitleAlternate | Hum. Brain Mapp |
PublicationYear | 2004 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley-Liss |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley-Liss |
References | Sinclair RJ, Burton H (1993): Neuronal activity in the second somatosensory cortex of monkeys (Macaca mulatta) during active touch of gratings. J Neurophysiol 70: 331-350. Moore CI, Crosier E, Greve DN, Savoy R, Merzenich MM, Dale AM (2002): Cortical correlates of vibrotactile detection in humans. San Francisco: Cognitive Neuroscience Society. Semmes J (1965): A non-tactual factor in astereognosis. Neuropsychologia 3: 295-315. Platz T (1996): Tactile agnosia. Casuistic evidence and theoretical remarks on modality-specific meaning representations and sensorimotor integration. Brain 119: 1565-1574. Ginsburg MD, Yoshii F, Vibulsresth S, Chang JY, Duara R, Barker WW, Boothe TE (1987): Human task-specific somatosensory activation. Neurology 37: 1301-1308. Zangaladze A, Epstein CM, Grafton ST, Sathian K (1999): Involvement of visual cortex in tactile discrimination of orientation. Nature 401: 587-590. Binkofski F, Buccino G, Posse S, Seitz RJ, Rizzolatti G, Freund H (1999a): Fronto-parietal circuit for object manipulation in man: evidence from an fMRI study. Eur J Neurosci 11: 3276-3286. Brett M, Anton JL, Valabregue R, Poline JB (2002): Region of interest analysis using an SPM toolbox [abstract]. Presented at the 8th International Conference on Functional Mapping of the Human Brain, June 2-6, 2002, Sendai, Japan. Neuroimage 16: 497A. Sadato N, Pascual-Leone A, Grafman J, Ibanez V, Deiber MP, Dold G, Hallett M (1996): Activation of the primary visual cortex by Braille reading in blind subjects. Nature 380: 526-528. Klatzky RL, Lederman SJ, Reed CL (1987): There's more to touch than meets the eye: the salience of object attributes for haptics with and without vision. J Exp Psychol Gen 116: 356-369. Murray EA, Mishkin M (1984): Relative contributions of SII and area 5 to tactile discrimination in monkeys. Behav Brain Res 11: 67-83. Farah MJ (1980): Visual agnosia. Cambridge, MA: MIT Press. Friston KJ, Holmes AP, Price CJ, Buchel C, Worsley KJ (1999): Multisubject fMRI studies and conjunction analyses. Neuroimage 10: 385-396. Corkin S, Milner B, Rasmussen T (1970): Somatosensory thresholds-contrasting effects of postcentral-gyrus and posterior parietal-lobe excisions. Arch Neurol 23: 41-58. Norrsell U (1978): Sensory defects caused by lesions of the first (SI) and second (SII) somatosensory areas of the dog. Exp Brain Res 32: 181-195. Easton RD, Srinivas K, Greene AJ (1997): Do vision and haptics share common representations? Implicit and explicit memory within and between modalities. J Exp Psychol Learn Mem Cogn 23: 153-163. Binkofski F, Buccino G, Stephan KM, Rizzolatti G, Seitz RJ, Freund HJ (1999b): A parieto-premotor network for object manipulation: evidence from neuroimaging. Exp Brain Res 128: 210-213. Deibert E, Kraut M, Kremen S, Hart J (1999): Neural pathways in tactile object recognition. Neurology 52: 1413-1417. Roland PE (1993): Brain activation. New York: John Wiley and Sons. Talairach J, Tournoux P (1988): Co-planar stereotaxic atlas of the human brain. New York: Thieme. Friedman DP, Murray EA, O'Neill JB, Mishkin M (1986): Cortical connections of the somatosensory fields of the lateral sulcus of macaques: evidence of a corticolimbic pathway for touch. J Comp Neurol 252: 323-347. Klein I, Paradis AL, Poline JB, Kosslyn SM, Bihan DL (2000): Transient activity in the human calcarine cortex during visual-mental imagery: an event-related fMRI study. J Cogn Neurosci 12: 15-23. O'Sullivan BT, Roland PE, Kawashima R (1994): A PET study of somatosensory discrimination in man: microgeometry versus macrogeometry. Eur J Neurosci 6: 137-148. Krubitzer L, Clarey J, Tweedale R, Elston G, Calford M (1995): A redefinition of somatosensory areas in the lateral sulcus of macaque monkeys. J Neurosci 15: 3821-3839. Passingham RE (1996): Functional specialization of the supplementary motor area in monkeys and humans. Adv Neurol 70: 105-116. Amedi A, Jacobson G, Hendler T, Malach R, Zohary E (2002): Convergence of visual and tactile shape processing in the human lateral occipital complex. Cereb Cortex 12: 1202-1212. James TW, Humphrey GK, Gati JS, Servos P, Menon RS, Goodale MA (2002): Haptic study of three-dimensional objects activates extrastriate visual areas. Neuropsychologia 40: 1706-1714. Chen W, Toshinoir K, Xio-Hong Z, Ogawa S, Tank DW, Ugurbil K (1998): Human primary visual cortex and lateral geniculate nucleus activation during visual imagery. Neuroreport 9: 3669-3674. Halgren E, Dale AM, Sereno MI, Tootell RB, Marinkovic K, Rosen BR (1999): Location of human face-selective cortex with respect to retinotopic areas. Hum Brain Mapp 7: 29-37. Zhou YD, Fuster JM (2000): Visuo-tactile cross-modal associations in cortical somatosensory cells. Proc Natl Acad Sci USA 97: 9777-9782. Friston KJ, Holmes AP, Worsley KJ, Poline JB, Frith CD, Frackowiak RS (1995b): Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 2: 189-210. Garcha H, Ettlinger G (1980): Tactile discrimination learning in the monkey: the effects of unilateral or bilateral removals of the second somatosensory cortex (area SII). Cortex 16: 397-412. Roland PE, O'Sullivan B, Kawashima R (1998): Shape and roughness activate different somatosensory areas in the human brain. Proc Natl Acad Sci USA 95: 3295-3300. Lin W, Kuppusamy K, Haacke EM, Burton H (1996): Functional MRI in human somatosensory cortex activated by touching textured surfaces. J Magn Reson Imaging 6: 565-572. Friston KJ, Ashburner J, Poline JB, Frith CD, Heather JD, Frackowiak RS (1995a): Spatial registration and normalization of images. Hum Brain Mapp 2: 165-189. Reales JM, Ballesteros S (1999): Implicit and explicit memory for visual and haptic objects: Cross-modal priming depends on structural descriptions. J Exp Psychol Learn Mem Cogn 25: 644-663. Mellet E, Tzourio N, Crivello F, Joliot M, Denis M, Mazoyer B (1996): Functional anatomy of spatial mental imagery generated from verbal instructions. J Neurosci 16: 6504-6512. Burton H, Videen TO, Raichle ME (1993): Tactile-vibration-activated foci in insular and parietal-opercular cortex studied with positron emission tomography mapping the second somatosensory area in humans. Somatosens Mot Res 10: 297-308. Penfield W, Jasper H (1954): Epilepsy and the functional anatomy of the human brain. Boston, MA: Little, Brown and Co. Kerst SM, Howard JH Jr (1978): Memory psychophysics for visual area and length. Mem Cogn 6: 327-335. Anton JL, Benali H, Guigon E, Di Paola M, Bittoun J, Jolivet O, Burnod Y (1996): Functional MR imaging of the human sensorimotor cortex during haptic discrimination. Neuroreport 7: 2849-2852. Bushnell EW, Baxt C (1999): Children's haptic and cross-modal recognition with familiar and unfamiliar objects. J Exp Psychol Hum Percept Perform 25: 1867-1881. Caselli RJ (1991): Rediscovering tactile agnosia. Mayo Clin Proc 66: 129-142. Tootell RB, Hadjikhani NK, Mendola JD, Marrett S, Dale AM (1998): From retinotopy to recognition: fMRI in human visual cortex. Trends Cogn Sci 2: 174-183. Sathian K, Zangaladze A, Hoffman JM, Grafton ST (1997): Feeling with the mind's eye. Neuroreport 8: 3877-3881. Reed CL, Caselli RJ (1994): The nature of tactile agnosia: a case study. Neuropsychologia 32: 527-539. Servos P, Lederman S, Wilson D, Gati J (2001): fMRI-derived cortical maps for shape, roughness, and hardness. Soc Neurosci Abstr:24. Reed CL, Caselli RJ, Farah MJ (1996): Tactile agnosia. Underlying impairment and implications for normal tactile object recognition. Brain 119: 875-888. Evans AC, Collins DL, Mills SR, Brown ED, Kelly RL, Peters TM (1993): 3-D statistical neuroanatomical models from 305 MRI volumes. In: Proceedings IEEE-Nuclear Science Symposium and Medical Imaging Conference. Piscataway, NJ: IEEE Inc. p 1813-1817. Mazziotta JC, Phelps ME, Halgren E (1983): Local cerebral glucose metabolic response to audiovisual stimulation and deprivation: studies in human subjects with positron CT. Hum Neurobiol 2: 11-23. Shulman GL, Fiez JA, Corbetta M, Buckner RL, Miezin FM, Raichle ME, Petersen SE (1997): Common blood flow changes across visual tasks. II: Decreases in cerebral cortex. J Cogn Neurosci 9: 648-663. Jones EG, Powell TP (1970): An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93: 793-820. Robinson CJ, Burton H (1980): Organization of somatosensory receptive fields in cortical areas 7b, retroinsula, postauditory and granular insula of M. fascicularis. J Comp Neurol 192: 69-92. Bonda E, Petrides M, Evans A (1996): Neural systems for tactual memories. J Neurophysiol 75: 1730-1737. Klatzky RL, Lederman SJ (1992): Stages of manual exploration in haptic object identification. Percept Psychophys 52: 661-670. Klatzky RL, Lederman S, Metzger V (1985): Identifying objects by touch: an "expert system." Percept Psychophys 37: 299-302. Amedi A, Malach R, Hendler T, Peled S, Zohary E (2001): Visuohaptic object-related activation in the ventral visual pathway. Nat Neurosci 4: 324-330. Reed CL, Dale AM, Dhond RP, Post D, Paulson K, Halgren E (2000): Activation of ventrolateral somatosensory cortex for tactile pattern discrimination using MEG. Neuroimage 11: S688. Caselli RJ (1993): Ventrolateral and dorsomedial somatosensory association cortex damage produces distinct somesthetic syndromes in humans. Neurology 43: 762-771. Mishkin M (1979): Analogous neural models for tactual and visual learning. Neuropsychologia 17: 139-150. Lüders H, Lesser RP, Dinner DS, Hahn JF, Salanga V, Morris HH (1985): The second sensory area in humans, evoked potentials and electrical stimulation studies. Ann Neurol 17: 177-184. 2002; 16 1983; 2 1986; 252 1978; 32 1999a; 11 2002; 12 1996; 380 1995b; 2 1996; 70 1999; 401 1997; 9 1996; 75 1987; 37 1978; 6 1992; 52 1997; 8 1965; 3 1994; 264 1985; 17 1987; 116 2000 2000; 12 2002; 40 1993; 70 1984; 11 2000; 11 2000; 97 1970; 23 1999; 10 1999; 52 1982 1980 1998; 95 1996; 6 1994; 32 1996; 7 1988 1979; 17 1999b; 128 1995; 15 1993; 43 1999; 25 1997; 23 1954 1993 1980; 192 1970; 93 2002 1999; 7 1996; 16 2001; 24 1999 1980; 16 1988; 4 1987; 21 1995a; 2 2001; 4 1991; 66 1993; 10 1984; 5 1998; 2 1985; 37 1996; 119 1998; 9 1994; 6 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 Ungerleider LG (e_1_2_8_67_1) 1982 Burton H (e_1_2_8_10_1) 1984 e_1_2_8_5_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 Moore CI (e_1_2_8_44_1) 2002 e_1_2_8_45_1 Farah MJ (e_1_2_8_21_1) 1980 e_1_2_8_62_1 Talairach J (e_1_2_8_64_1) 1988 e_1_2_8_60_1 Mazziotta JC (e_1_2_8_41_1) 1983; 2 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 Bonda E (e_1_2_8_7_1) 1996; 75 Klatzky RL (e_1_2_8_33_1) 1987 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 Evans AC (e_1_2_8_19_1) 1993 e_1_2_8_27_1 e_1_2_8_69_1 Sinclair RJ (e_1_2_8_63_1) 1993; 70 e_1_2_8_2_1 e_1_2_8_4_1 Kaas JH (e_1_2_8_31_1) 1988 Passingham RE (e_1_2_8_48_1) 1996; 70 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_23_1 e_1_2_8_65_1 Roland PE (e_1_2_8_56_1) 1993 e_1_2_8_40_1 Servos P (e_1_2_8_61_1) 2001; 24 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 Mellet E (e_1_2_8_42_1) 1996; 16 Brett M (e_1_2_8_9_1) 2002; 16 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – reference: Penfield W, Jasper H (1954): Epilepsy and the functional anatomy of the human brain. Boston, MA: Little, Brown and Co. – reference: Kerst SM, Howard JH Jr (1978): Memory psychophysics for visual area and length. Mem Cogn 6: 327-335. – reference: James TW, Humphrey GK, Gati JS, Servos P, Menon RS, Goodale MA (2002): Haptic study of three-dimensional objects activates extrastriate visual areas. Neuropsychologia 40: 1706-1714. – reference: Jones EG, Powell TP (1970): An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93: 793-820. – reference: Sinclair RJ, Burton H (1993): Neuronal activity in the second somatosensory cortex of monkeys (Macaca mulatta) during active touch of gratings. J Neurophysiol 70: 331-350. – reference: Platz T (1996): Tactile agnosia. Casuistic evidence and theoretical remarks on modality-specific meaning representations and sensorimotor integration. Brain 119: 1565-1574. – reference: Amedi A, Malach R, Hendler T, Peled S, Zohary E (2001): Visuohaptic object-related activation in the ventral visual pathway. Nat Neurosci 4: 324-330. – reference: Moore CI, Crosier E, Greve DN, Savoy R, Merzenich MM, Dale AM (2002): Cortical correlates of vibrotactile detection in humans. San Francisco: Cognitive Neuroscience Society. – reference: Burton H, Videen TO, Raichle ME (1993): Tactile-vibration-activated foci in insular and parietal-opercular cortex studied with positron emission tomography mapping the second somatosensory area in humans. Somatosens Mot Res 10: 297-308. – reference: Klatzky RL, Lederman SJ, Reed CL (1987): There's more to touch than meets the eye: the salience of object attributes for haptics with and without vision. J Exp Psychol Gen 116: 356-369. – reference: Reed CL, Caselli RJ (1994): The nature of tactile agnosia: a case study. Neuropsychologia 32: 527-539. – reference: Corkin S, Milner B, Rasmussen T (1970): Somatosensory thresholds-contrasting effects of postcentral-gyrus and posterior parietal-lobe excisions. Arch Neurol 23: 41-58. – reference: Garcha H, Ettlinger G (1980): Tactile discrimination learning in the monkey: the effects of unilateral or bilateral removals of the second somatosensory cortex (area SII). Cortex 16: 397-412. – reference: Roland PE (1993): Brain activation. New York: John Wiley and Sons. – reference: Norrsell U (1978): Sensory defects caused by lesions of the first (SI) and second (SII) somatosensory areas of the dog. Exp Brain Res 32: 181-195. – reference: Robinson CJ, Burton H (1980): Organization of somatosensory receptive fields in cortical areas 7b, retroinsula, postauditory and granular insula of M. fascicularis. J Comp Neurol 192: 69-92. – reference: Mazziotta JC, Phelps ME, Halgren E (1983): Local cerebral glucose metabolic response to audiovisual stimulation and deprivation: studies in human subjects with positron CT. Hum Neurobiol 2: 11-23. – reference: Amedi A, Jacobson G, Hendler T, Malach R, Zohary E (2002): Convergence of visual and tactile shape processing in the human lateral occipital complex. Cereb Cortex 12: 1202-1212. – reference: Binkofski F, Buccino G, Posse S, Seitz RJ, Rizzolatti G, Freund H (1999a): Fronto-parietal circuit for object manipulation in man: evidence from an fMRI study. Eur J Neurosci 11: 3276-3286. – reference: Zhou YD, Fuster JM (2000): Visuo-tactile cross-modal associations in cortical somatosensory cells. Proc Natl Acad Sci USA 97: 9777-9782. – reference: Klein I, Paradis AL, Poline JB, Kosslyn SM, Bihan DL (2000): Transient activity in the human calcarine cortex during visual-mental imagery: an event-related fMRI study. J Cogn Neurosci 12: 15-23. – reference: Anton JL, Benali H, Guigon E, Di Paola M, Bittoun J, Jolivet O, Burnod Y (1996): Functional MR imaging of the human sensorimotor cortex during haptic discrimination. Neuroreport 7: 2849-2852. – reference: Klatzky RL, Lederman S, Metzger V (1985): Identifying objects by touch: an "expert system." Percept Psychophys 37: 299-302. – reference: Reed CL, Dale AM, Dhond RP, Post D, Paulson K, Halgren E (2000): Activation of ventrolateral somatosensory cortex for tactile pattern discrimination using MEG. Neuroimage 11: S688. – reference: Klatzky RL, Lederman SJ (1992): Stages of manual exploration in haptic object identification. Percept Psychophys 52: 661-670. – reference: Mishkin M (1979): Analogous neural models for tactual and visual learning. Neuropsychologia 17: 139-150. – reference: Tootell RB, Hadjikhani NK, Mendola JD, Marrett S, Dale AM (1998): From retinotopy to recognition: fMRI in human visual cortex. Trends Cogn Sci 2: 174-183. – reference: Reed CL, Caselli RJ, Farah MJ (1996): Tactile agnosia. Underlying impairment and implications for normal tactile object recognition. Brain 119: 875-888. – reference: Murray EA, Mishkin M (1984): Relative contributions of SII and area 5 to tactile discrimination in monkeys. Behav Brain Res 11: 67-83. – reference: Friston KJ, Holmes AP, Price CJ, Buchel C, Worsley KJ (1999): Multisubject fMRI studies and conjunction analyses. Neuroimage 10: 385-396. – reference: Shulman GL, Fiez JA, Corbetta M, Buckner RL, Miezin FM, Raichle ME, Petersen SE (1997): Common blood flow changes across visual tasks. II: Decreases in cerebral cortex. J Cogn Neurosci 9: 648-663. – reference: Mellet E, Tzourio N, Crivello F, Joliot M, Denis M, Mazoyer B (1996): Functional anatomy of spatial mental imagery generated from verbal instructions. J Neurosci 16: 6504-6512. – reference: O'Sullivan BT, Roland PE, Kawashima R (1994): A PET study of somatosensory discrimination in man: microgeometry versus macrogeometry. Eur J Neurosci 6: 137-148. – reference: Chen W, Toshinoir K, Xio-Hong Z, Ogawa S, Tank DW, Ugurbil K (1998): Human primary visual cortex and lateral geniculate nucleus activation during visual imagery. Neuroreport 9: 3669-3674. – reference: Farah MJ (1980): Visual agnosia. Cambridge, MA: MIT Press. – reference: Brett M, Anton JL, Valabregue R, Poline JB (2002): Region of interest analysis using an SPM toolbox [abstract]. Presented at the 8th International Conference on Functional Mapping of the Human Brain, June 2-6, 2002, Sendai, Japan. Neuroimage 16: 497A. – reference: Lüders H, Lesser RP, Dinner DS, Hahn JF, Salanga V, Morris HH (1985): The second sensory area in humans, evoked potentials and electrical stimulation studies. Ann Neurol 17: 177-184. – reference: Servos P, Lederman S, Wilson D, Gati J (2001): fMRI-derived cortical maps for shape, roughness, and hardness. Soc Neurosci Abstr:24. – reference: Krubitzer L, Clarey J, Tweedale R, Elston G, Calford M (1995): A redefinition of somatosensory areas in the lateral sulcus of macaque monkeys. J Neurosci 15: 3821-3839. – reference: Semmes J (1965): A non-tactual factor in astereognosis. Neuropsychologia 3: 295-315. – reference: Caselli RJ (1991): Rediscovering tactile agnosia. Mayo Clin Proc 66: 129-142. – reference: Evans AC, Collins DL, Mills SR, Brown ED, Kelly RL, Peters TM (1993): 3-D statistical neuroanatomical models from 305 MRI volumes. In: Proceedings IEEE-Nuclear Science Symposium and Medical Imaging Conference. Piscataway, NJ: IEEE Inc. p 1813-1817. – reference: Reales JM, Ballesteros S (1999): Implicit and explicit memory for visual and haptic objects: Cross-modal priming depends on structural descriptions. J Exp Psychol Learn Mem Cogn 25: 644-663. – reference: Lin W, Kuppusamy K, Haacke EM, Burton H (1996): Functional MRI in human somatosensory cortex activated by touching textured surfaces. J Magn Reson Imaging 6: 565-572. – reference: Passingham RE (1996): Functional specialization of the supplementary motor area in monkeys and humans. Adv Neurol 70: 105-116. – reference: Roland PE, O'Sullivan B, Kawashima R (1998): Shape and roughness activate different somatosensory areas in the human brain. Proc Natl Acad Sci USA 95: 3295-3300. – reference: Easton RD, Srinivas K, Greene AJ (1997): Do vision and haptics share common representations? Implicit and explicit memory within and between modalities. J Exp Psychol Learn Mem Cogn 23: 153-163. – reference: Binkofski F, Buccino G, Stephan KM, Rizzolatti G, Seitz RJ, Freund HJ (1999b): A parieto-premotor network for object manipulation: evidence from neuroimaging. Exp Brain Res 128: 210-213. – reference: Deibert E, Kraut M, Kremen S, Hart J (1999): Neural pathways in tactile object recognition. Neurology 52: 1413-1417. – reference: Sathian K, Zangaladze A, Hoffman JM, Grafton ST (1997): Feeling with the mind's eye. Neuroreport 8: 3877-3881. – reference: Ginsburg MD, Yoshii F, Vibulsresth S, Chang JY, Duara R, Barker WW, Boothe TE (1987): Human task-specific somatosensory activation. Neurology 37: 1301-1308. – reference: Bonda E, Petrides M, Evans A (1996): Neural systems for tactual memories. J Neurophysiol 75: 1730-1737. – reference: Caselli RJ (1993): Ventrolateral and dorsomedial somatosensory association cortex damage produces distinct somesthetic syndromes in humans. Neurology 43: 762-771. – reference: Halgren E, Dale AM, Sereno MI, Tootell RB, Marinkovic K, Rosen BR (1999): Location of human face-selective cortex with respect to retinotopic areas. Hum Brain Mapp 7: 29-37. – reference: Friston KJ, Ashburner J, Poline JB, Frith CD, Heather JD, Frackowiak RS (1995a): Spatial registration and normalization of images. Hum Brain Mapp 2: 165-189. – reference: Friston KJ, Holmes AP, Worsley KJ, Poline JB, Frith CD, Frackowiak RS (1995b): Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 2: 189-210. – reference: Sadato N, Pascual-Leone A, Grafman J, Ibanez V, Deiber MP, Dold G, Hallett M (1996): Activation of the primary visual cortex by Braille reading in blind subjects. Nature 380: 526-528. – reference: Zangaladze A, Epstein CM, Grafton ST, Sathian K (1999): Involvement of visual cortex in tactile discrimination of orientation. Nature 401: 587-590. – reference: Friedman DP, Murray EA, O'Neill JB, Mishkin M (1986): Cortical connections of the somatosensory fields of the lateral sulcus of macaques: evidence of a corticolimbic pathway for touch. J Comp Neurol 252: 323-347. – reference: Bushnell EW, Baxt C (1999): Children's haptic and cross-modal recognition with familiar and unfamiliar objects. J Exp Psychol Hum Percept Perform 25: 1867-1881. – reference: Talairach J, Tournoux P (1988): Co-planar stereotaxic atlas of the human brain. New York: Thieme. – volume: 52 start-page: 661 year: 1992 end-page: 670 article-title: Stages of manual exploration in haptic object identification publication-title: Percept Psychophys – volume: 4 year: 1988 – volume: 21 start-page: 121 year: 1987 end-page: 151 – volume: 43 start-page: 762 year: 1993 end-page: 771 article-title: Ventrolateral and dorsomedial somatosensory association cortex damage produces distinct somesthetic syndromes in humans publication-title: Neurology – volume: 17 start-page: 139 year: 1979 end-page: 150 article-title: Analogous neural models for tactual and visual learning publication-title: Neuropsychologia – start-page: 549 year: 1982 end-page: 586 – volume: 93 start-page: 793 year: 1970 end-page: 820 article-title: An anatomical study of converging sensory pathways within the cerebral cortex of the monkey publication-title: Brain – volume: 11 start-page: 3276 year: 1999a end-page: 3286 article-title: Fronto‐parietal circuit for object manipulation in man: evidence from an fMRI study publication-title: Eur J Neurosci – volume: 2 start-page: 165 year: 1995a end-page: 189 article-title: Spatial registration and normalization of images publication-title: Hum Brain Mapp – volume: 3 start-page: 295 year: 1965 end-page: 315 article-title: A non‐tactual factor in astereognosis publication-title: Neuropsychologia – volume: 9 start-page: 3669 year: 1998 end-page: 3674 article-title: Human primary visual cortex and lateral geniculate nucleus activation during visual imagery publication-title: Neuroreport – volume: 32 start-page: 527 year: 1994 end-page: 539 article-title: The nature of tactile agnosia: a case study publication-title: Neuropsychologia – volume: 119 start-page: 1565 year: 1996 end-page: 1574 article-title: Tactile agnosia. Casuistic evidence and theoretical remarks on modality‐specific meaning representations and sensorimotor integration publication-title: Brain – volume: 192 start-page: 69 year: 1980 end-page: 92 article-title: Organization of somatosensory receptive fields in cortical areas 7b, retroinsula, postauditory and granular insula of M. fascicularis publication-title: J Comp Neurol – volume: 2 start-page: 11 year: 1983 end-page: 23 article-title: Local cerebral glucose metabolic response to audiovisual stimulation and deprivation: studies in human subjects with positron CT publication-title: Hum Neurobiol – volume: 32 start-page: 181 year: 1978 end-page: 195 article-title: Sensory defects caused by lesions of the first (SI) and second (SII) somatosensory areas of the dog publication-title: Exp Brain Res – volume: 5 start-page: 31 year: 1984 end-page: 98 – volume: 16 start-page: 497A year: 2002 article-title: Region of interest analysis using an SPM toolbox publication-title: Neuroimage – volume: 40 start-page: 1706 year: 2002 end-page: 1714 article-title: Haptic study of three‐dimensional objects activates extrastriate visual areas publication-title: Neuropsychologia – volume: 25 start-page: 644 year: 1999 end-page: 663 article-title: Implicit and explicit memory for visual and haptic objects: Cross‐modal priming depends on structural descriptions publication-title: J Exp Psychol Learn Mem Cogn – volume: 23 start-page: 41 year: 1970 end-page: 58 article-title: Somatosensory thresholds—contrasting effects of postcentral‐gyrus and posterior parietal‐lobe excisions publication-title: Arch Neurol – volume: 6 start-page: 565 year: 1996 end-page: 572 article-title: Functional MRI in human somatosensory cortex activated by touching textured surfaces publication-title: J Magn Reson Imaging – volume: 70 start-page: 105 year: 1996 end-page: 116 article-title: Functional specialization of the supplementary motor area in monkeys and humans publication-title: Adv Neurol – volume: 95 start-page: 3295 year: 1998 end-page: 3300 article-title: Shape and roughness activate different somatosensory areas in the human brain publication-title: Proc Natl Acad Sci USA – volume: 37 start-page: 1301 year: 1987 end-page: 1308 article-title: Human task‐specific somatosensory activation publication-title: Neurology – volume: 97 start-page: 9777 year: 2000 end-page: 9782 article-title: Visuo‐tactile cross‐modal associations in cortical somatosensory cells publication-title: Proc Natl Acad Sci USA – volume: 128 start-page: 210 year: 1999b end-page: 213 article-title: A parieto‐premotor network for object manipulation: evidence from neuroimaging publication-title: Exp Brain Res – start-page: 1813 year: 1993 end-page: 1817 – volume: 8 start-page: 3877 year: 1997 end-page: 3881 article-title: Feeling with the mind's eye publication-title: Neuroreport – volume: 380 start-page: 526 year: 1996 end-page: 528 article-title: Activation of the primary visual cortex by Braille reading in blind subjects publication-title: Nature – year: 1993 – start-page: 535 year: 2000 end-page: 560 – volume: 9 start-page: 648 year: 1997 end-page: 663 article-title: Common blood flow changes across visual tasks. II: Decreases in cerebral cortex publication-title: J Cogn Neurosci – volume: 23 start-page: 153 year: 1997 end-page: 163 article-title: Do vision and haptics share common representations? Implicit and explicit memory within and between modalities publication-title: J Exp Psychol Learn Mem Cogn – volume: 6 start-page: 327 year: 1978 end-page: 335 article-title: Memory psychophysics for visual area and length publication-title: Mem Cogn – volume: 116 start-page: 356 year: 1987 end-page: 369 article-title: There's more to touch than meets the eye: the salience of object attributes for haptics with and without vision publication-title: J Exp Psychol Gen – volume: 75 start-page: 1730 year: 1996 end-page: 1737 article-title: Neural systems for tactual memories publication-title: J Neurophysiol – volume: 16 start-page: 6504 year: 1996 end-page: 6512 article-title: Functional anatomy of spatial mental imagery generated from verbal instructions publication-title: J Neurosci – volume: 16 start-page: 397 year: 1980 end-page: 412 article-title: Tactile discrimination learning in the monkey: the effects of unilateral or bilateral removals of the second somatosensory cortex (area SII) publication-title: Cortex – volume: 24 year: 2001 article-title: fMRI‐derived cortical maps for shape, roughness, and hardness publication-title: Soc Neurosci Abstr – volume: 12 start-page: 1202 year: 2002 end-page: 1212 article-title: Convergence of visual and tactile shape processing in the human lateral occipital complex publication-title: Cereb Cortex – volume: 252 start-page: 323 year: 1986 end-page: 347 article-title: Cortical connections of the somatosensory fields of the lateral sulcus of macaques: evidence of a corticolimbic pathway for touch publication-title: J Comp Neurol – volume: 2 start-page: 189 year: 1995b end-page: 210 article-title: Statistical parametric maps in functional imaging: a general linear approach publication-title: Hum Brain Mapp – volume: 17 start-page: 177 year: 1985 end-page: 184 article-title: The second sensory area in humans, evoked potentials and electrical stimulation studies publication-title: Ann Neurol – volume: 15 start-page: 3821 year: 1995 end-page: 3839 article-title: A redefinition of somatosensory areas in the lateral sulcus of macaque monkeys publication-title: J Neurosci – year: 1954 – volume: 11 start-page: S688 year: 2000 article-title: Activation of ventrolateral somatosensory cortex for tactile pattern discrimination using MEG publication-title: Neuroimage – volume: 37 start-page: 299 year: 1985 end-page: 302 article-title: Identifying objects by touch: an “expert system.” publication-title: Percept Psychophys – volume: 401 start-page: 587 year: 1999 end-page: 590 article-title: Involvement of visual cortex in tactile discrimination of orientation publication-title: Nature – volume: 119 start-page: 875 year: 1996 end-page: 888 article-title: Tactile agnosia. Underlying impairment and implications for normal tactile object recognition publication-title: Brain – volume: 264 start-page: 263 year: 1994 end-page: 274 – volume: 10 start-page: 385 year: 1999 end-page: 396 article-title: Multisubject fMRI studies and conjunction analyses publication-title: Neuroimage – volume: 12 start-page: 15 year: 2000 end-page: 23 article-title: Transient activity in the human calcarine cortex during visual‐mental imagery: an event‐related fMRI study publication-title: J Cogn Neurosci – volume: 2 start-page: 174 year: 1998 end-page: 183 article-title: From retinotopy to recognition: fMRI in human visual cortex publication-title: Trends Cogn Sci – volume: 4 start-page: 324 year: 2001 end-page: 330 article-title: Visuohaptic object‐related activation in the ventral visual pathway publication-title: Nat Neurosci – volume: 6 start-page: 137 year: 1994 end-page: 148 article-title: A PET study of somatosensory discrimination in man: microgeometry versus macrogeometry publication-title: Eur J Neurosci – volume: 52 start-page: 1413 year: 1999 end-page: 1417 article-title: Neural pathways in tactile object recognition publication-title: Neurology – volume: 10 start-page: 297 year: 1993 end-page: 308 article-title: Tactile‐vibration‐activated foci in insular and parietal‐opercular cortex studied with positron emission tomography mapping the second somatosensory area in humans publication-title: Somatosens Mot Res – year: 1980 – volume: 66 start-page: 129 year: 1991 end-page: 142 article-title: Rediscovering tactile agnosia publication-title: Mayo Clin Proc – volume: 11 start-page: 67 year: 1984 end-page: 83 article-title: Relative contributions of SII and area 5 to tactile discrimination in monkeys publication-title: Behav Brain Res – volume: 70 start-page: 331 year: 1993 end-page: 350 article-title: Neuronal activity in the second somatosensory cortex of monkeys ( ) during active touch of gratings publication-title: J Neurophysiol – year: 2002 – year: 1988 – volume: 7 start-page: 29 year: 1999 end-page: 37 article-title: Location of human face‐selective cortex with respect to retinotopic areas publication-title: Hum Brain Mapp – volume: 7 start-page: 2849 year: 1996 end-page: 2852 article-title: Functional MR imaging of the human sensorimotor cortex during haptic discrimination publication-title: Neuroreport – volume: 25 start-page: 1867 year: 1999 end-page: 1881 article-title: Children's haptic and cross‐modal recognition with familiar and unfamiliar objects publication-title: J Exp Psychol Hum Percept Perform – year: 1999 – ident: e_1_2_8_65_1 doi: 10.1016/B978-012692545-6/50020-9 – ident: e_1_2_8_26_1 doi: 10.1016/S0010-9452(80)80041-4 – ident: e_1_2_8_16_1 doi: 10.1001/archneur.1970.00480250045007 – ident: e_1_2_8_20_1 doi: 10.1007/978-1-4615-2546-2_48 – ident: e_1_2_8_52_1 doi: 10.1016/0028-3932(94)90142-2 – ident: e_1_2_8_66_1 doi: 10.1016/S1364-6613(98)01171-1 – ident: e_1_2_8_2_1 doi: 10.1038/85201 – ident: e_1_2_8_58_1 doi: 10.1038/380526a0 – ident: e_1_2_8_68_1 doi: 10.1038/44139 – ident: e_1_2_8_59_1 doi: 10.1097/00001756-199712220-00008 – ident: e_1_2_8_60_1 doi: 10.1016/0028-3932(65)90004-7 – ident: e_1_2_8_14_1 doi: 10.1212/WNL.43.4.762 – volume: 75 start-page: 1730 year: 1996 ident: e_1_2_8_7_1 article-title: Neural systems for tactual memories publication-title: J Neurophysiol doi: 10.1152/jn.1996.75.4.1730 – ident: e_1_2_8_32_1 doi: 10.3758/BF03197463 – ident: e_1_2_8_62_1 doi: 10.1162/jocn.1997.9.5.648 – ident: e_1_2_8_35_1 doi: 10.1037/0096-3445.116.4.356 – volume: 70 start-page: 331 year: 1993 ident: e_1_2_8_63_1 article-title: Neuronal activity in the second somatosensory cortex of monkeys (Macaca mulatta) during active touch of gratings publication-title: J Neurophysiol doi: 10.1152/jn.1993.70.1.331 – ident: e_1_2_8_6_1 doi: 10.1007/s002210050838 – volume-title: Co‐planar stereotaxic atlas of the human brain year: 1988 ident: e_1_2_8_64_1 – volume: 24 year: 2001 ident: e_1_2_8_61_1 article-title: fMRI‐derived cortical maps for shape, roughness, and hardness publication-title: Soc Neurosci Abstr – ident: e_1_2_8_11_1 doi: 10.3109/08990229309028839 – ident: e_1_2_8_4_1 doi: 10.1097/00001756-199611250-00008 – volume: 16 start-page: 6504 year: 1996 ident: e_1_2_8_42_1 article-title: Functional anatomy of spatial mental imagery generated from verbal instructions publication-title: J Neurosci doi: 10.1523/JNEUROSCI.16-20-06504.1996 – ident: e_1_2_8_49_1 doi: 10.1097/00007611-195407000-00024 – ident: e_1_2_8_43_1 doi: 10.1016/0028-3932(79)90005-8 – ident: e_1_2_8_69_1 doi: 10.1073/pnas.97.17.9777 – ident: e_1_2_8_17_1 doi: 10.1212/WNL.52.7.1413 – volume: 16 start-page: 497A year: 2002 ident: e_1_2_8_9_1 article-title: Region of interest analysis using an SPM toolbox publication-title: Neuroimage – year: 1988 ident: e_1_2_8_31_1 – ident: e_1_2_8_3_1 doi: 10.1093/cercor/12.11.1202 – ident: e_1_2_8_50_1 doi: 10.1093/brain/119.5.1565 – ident: e_1_2_8_25_1 doi: 10.1006/nimg.1999.0484 – ident: e_1_2_8_24_1 doi: 10.1002/hbm.460020402 – ident: e_1_2_8_34_1 doi: 10.3758/BF03211351 – ident: e_1_2_8_47_1 doi: 10.1111/j.1460-9568.1994.tb00255.x – ident: e_1_2_8_46_1 doi: 10.1007/BF00239726 – ident: e_1_2_8_54_1 doi: 10.1016/S1053-8119(00)91618-5 – ident: e_1_2_8_55_1 doi: 10.1002/cne.901920105 – ident: e_1_2_8_40_1 doi: 10.1002/ana.410170212 – volume-title: Brain activation year: 1993 ident: e_1_2_8_56_1 – ident: e_1_2_8_29_1 doi: 10.1016/S0028-3932(02)00017-9 – ident: e_1_2_8_23_1 doi: 10.1002/hbm.460030303 – ident: e_1_2_8_36_1 doi: 10.3758/BF03211702 – ident: e_1_2_8_12_1 doi: 10.1037/0096-1523.25.6.1867 – ident: e_1_2_8_15_1 doi: 10.1097/00001756-199811160-00019 – ident: e_1_2_8_18_1 doi: 10.1037/0278-7393.23.1.153 – ident: e_1_2_8_53_1 doi: 10.1093/brain/119.3.875 – ident: e_1_2_8_39_1 doi: 10.1002/jmri.1880060402 – volume: 2 start-page: 11 year: 1983 ident: e_1_2_8_41_1 article-title: Local cerebral glucose metabolic response to audiovisual stimulation and deprivation: studies in human subjects with positron CT publication-title: Hum Neurobiol – start-page: 1813 volume-title: 3‐D statistical neuroanatomical models from 305 MRI volumes year: 1993 ident: e_1_2_8_19_1 – ident: e_1_2_8_37_1 doi: 10.1162/089892900564037 – start-page: 31 volume-title: Sensory‐motor areas and aspects of cortical connectivity year: 1984 ident: e_1_2_8_10_1 – ident: e_1_2_8_27_1 doi: 10.1212/WNL.37.8.1301 – start-page: 549 volume-title: Analysis of visual behavior year: 1982 ident: e_1_2_8_67_1 – start-page: 121 year: 1987 ident: e_1_2_8_33_1 – ident: e_1_2_8_38_1 doi: 10.1523/JNEUROSCI.15-05-03821.1995 – ident: e_1_2_8_22_1 doi: 10.1002/cne.902520304 – ident: e_1_2_8_8_1 – ident: e_1_2_8_30_1 doi: 10.1093/brain/93.4.793 – ident: e_1_2_8_28_1 doi: 10.1002/(SICI)1097-0193(1999)7:1<29::AID-HBM3>3.0.CO;2-R – volume-title: Visual agnosia year: 1980 ident: e_1_2_8_21_1 – ident: e_1_2_8_13_1 doi: 10.1016/S0025-6196(12)60484-4 – ident: e_1_2_8_51_1 doi: 10.1037/0278-7393.25.3.644 – ident: e_1_2_8_57_1 doi: 10.1073/pnas.95.6.3295 – volume: 70 start-page: 105 year: 1996 ident: e_1_2_8_48_1 article-title: Functional specialization of the supplementary motor area in monkeys and humans publication-title: Adv Neurol – volume-title: Cortical correlates of vibrotactile detection in humans year: 2002 ident: e_1_2_8_44_1 – ident: e_1_2_8_45_1 doi: 10.1016/0166-4328(84)90009-3 – ident: e_1_2_8_5_1 doi: 10.1046/j.1460-9568.1999.00753.x |
SSID | ssj0011501 |
Score | 2.2120104 |
Snippet | A functional magnetic resonance imaging (fMRI) study was conducted during which seven subjects carried out naturalistic tactile object recognition (TOR) of... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 236 |
SubjectTerms | Adult Attention - physiology Biological and medical sciences Brain Mapping fMRI haptic human Humans Investigative techniques, diagnostic techniques (general aspects) Magnetic Resonance Imaging Male Medical sciences Nervous system object recognition Radiodiagnosis. Nmr imagery. Nmr spectrometry Recognition (Psychology) - physiology second somatosensory cortex somatosensory somatosensory cortex Somatosensory Cortex - physiology tactile touch Touch - physiology |
Title | Neural substrates of tactile object recognition: An fMRI study |
URI | https://api.istex.fr/ark:/67375/WNG-CTFTWS1X-8/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.10162 https://www.ncbi.nlm.nih.gov/pubmed/15038005 https://www.proquest.com/docview/20471401 https://www.proquest.com/docview/71744459 https://pubmed.ncbi.nlm.nih.gov/PMC6871926 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEB5KBfFFa6s2ttZFpPiSNj92N5cWhLN4nsL1oV7pPQhhd7Oh0jaR5g6sf70zm0uupy2Ib4FMFnYyO_vN7rffAryNCsQcQWh8rgvhc6FiX8dJ7guDVU9U2JRrWtAfHcvhKf8yEZMVOGzPwjT6EN2CG40Ml69pgCtd7y9EQ8_1lSs9Kf8SV4sA0UknHUVAxxVbOMX6KWbgVlUoiPa7L5fmogfk1p_EjVQ1uqdo7rW4C3j-zZ-8jWvdxDR4At_aLjV8lIu92VTvmV9_qD3-Z5_X4PEcsLJ-E2FPYcWW67DRL7FYv7phu8xRSN3a_Do8HM136jfgPal-4Hc1JiYngFuzqmBTOkZxaVmlafmHdeylqjxg_ZIVo5PPzAnePoPTwcfx0dCf39XgG6xYMKmaVAole5FWRc9InAK1CUUS6iAvQjpxn9rASK5CExfWKindDWe5tTKNBOaM-DmsllVpN4GpOMaw4krIRHFuhZYmzhHW5coimJKJB-_av5aZuZA53adxmTUSzFGGbnLUtciDN53pj0a94y6jXffrOwt1fUF0t0RkZ8efsqPxYHz2NZxkPQ92lmJj0SSVZQiUPHjdBkuGo5S2XlRpq1mdRQEnZcTwfgssqznnIvXgRRNct1oPYoT1woNkKew6A1IIX35Tfj93SuESy-E0kugxF1X3-yAbfhi5h5f_broFjxY0pm1YnV7P7CtEaFO944bib3r-NdQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8hkLa9bAz2kX2ANU1oL4F82E4zoUkdW1c20gdWRF-QZTuOmIBkoq208ddzdpqUbiBNe4uUiyVfzuffnc-_A3gbFYg5glD7VBXMp0zGvoqT3Gcao56oMClVNqGfDXj_iH4dsdES7DZ3YWp-iDbhZleG89d2gduE9M6cNfRUXbjYEx3wiu3obfsXfDpsyaMs1HHhFm6yfoo-uOEVCqKd9tOF3WjFKvaXrY6UY1RQUXe2uA16_l1BeRPZuq2p9whOmknVFSln29OJ2tZXf_A9_u-sV-HhDLOSbm1kj2HJlGuw3i0xXr_4TbaIqyJ16fk1uJfNDuvX4YMl_sDvxuibHAfumFQFmdibFOeGVMpmgEhbwFSV70m3JEV2uE8c5-0TOOp9Hu71_Vm7Bl9j0IJ-VaecSd6JlCw6muMuqHTIklAFeRHaS_epCTSnMtRxYYzk3DU5y43hacTQbcRPYbmsSvMciIxjtCwqGU8kpYYpruMckV0uDeIpnnjwrvltQs-4zG1LjXNRszBHAtXkqtciD960oj9rAo_bhLbcv28l5OWZrXhLmDgefBF7w97w-Hs4Eh0PNhaMYz6kjcwQK3mw2ViLwIVqT19kaarpWEQBteSI4d0SGFlTSlnqwbPaum6MHsSI7JkHyYLdtQKWJHzxTfnj1JGFc4yI04ijxpxZ3a0D0f-YuYcX_y66Cff7w-xAHOwPvr2EB_OqplewPLmcmtcI2CZqw63La67lOe4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3raxQxEB9KC8UvPlof66MNIsUv2-4jyd4qCGf1vKp3SL3S-yCEJJtQabtbeneg_vVOsrd7PW1B_Lawk0AmM5PfJJNfAF4kFjFHFOuQKstCymQaqjQrQqYx60msyalyG_qDIe8f0Y9jNl6B181dmJofot1wc57h47Vz8IvC7i1IQ0_UuU89Mf6uUY7O4hDRYcsd5ZCOz7ZwjQ1zDMENrVCU7LVNlxajNafXH644Uk5QP7Z-2OI65Pl3AeVVYOtXpt4d-NaMqS5IOd2dTdWu_vUH3eN_Dvou3J4jVtKtTewerJhyAza7JWbr5z_JDvE1pH5zfgPWB_Oj-k1442g_sN0EI5NnwJ2QypKpu0dxZkil3P4PacuXqvIV6ZbEDg4PiGe8vQ9Hvfej_X44f6wh1JiyYFTVOWeSdxIlbUdzXAOVjlkWq6iwsbtyn5tIcypjnVpjJOf-ibPCGJ4nDING-gBWy6o0j4DINEW7opLxTFJqmOI6LRDXFdIgmuJZAC-bWRN6zmTuHtQ4EzUHcyJQTb52LQngeSt6UdN3XCe046e-lZCXp67eLWPiePhB7I96o-Ov8Vh0Athaso1Fly4vQ6QUwHZjLALd1J29yNJUs4lIIuqoEeObJTCvppSyPICHtXFd6T1KEdezALIls2sFHEX48p_y-4mnCueYD-cJR415q7pZB6L_duA_Hv-76Dasf3nXE58Php-ewK1FSdNTWJ1ezswzRGtTteW98jf4gTim |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+substrates+of+tactile+object+recognition%3A+An+fMRI+study&rft.jtitle=Human+brain+mapping&rft.au=Reed%2C+Catherine+L.&rft.au=Shoham%2C+Shy&rft.au=Halgren%2C+Eric&rft.date=2004-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=21&rft.issue=4&rft.spage=236&rft.epage=246&rft_id=info:doi/10.1002%2Fhbm.10162&rft_id=info%3Apmid%2F15038005&rft.externalDocID=PMC6871926 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |