Label-Free Cellular Imaging by Broadband Coherent Anti-Stokes Raman Scattering Microscopy

Raman microspectroscopy can provide the chemical contrast needed to characterize the complex intracellular environment and macromolecular organization in cells without exogenous labels. It has shown a remarkable ability to detect chemical changes underlying cell differentiation and pathology-related...

Full description

Saved in:
Bibliographic Details
Published inBiophysical journal Vol. 99; no. 8; pp. 2695 - 2704
Main Authors Parekh, Sapun H., Lee, Young Jong, Aamer, Khaled A., Cicerone, Marcus T.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 20.10.2010
Biophysical Society
The Biophysical Society
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Raman microspectroscopy can provide the chemical contrast needed to characterize the complex intracellular environment and macromolecular organization in cells without exogenous labels. It has shown a remarkable ability to detect chemical changes underlying cell differentiation and pathology-related chemical changes in tissues but has not been widely adopted for imaging, largely due to low signal levels. Broadband coherent anti-Stokes Raman scattering (B-CARS) offers the same inherent chemical contrast as spontaneous Raman but with increased acquisition rates. To date, however, only spectrally resolved signals from the strong CH-related vibrations have been used for CARS imaging. Here, we obtain Raman spectral images of single cells with a spectral range of 600–3200 cm −1, including signatures from weakly scattering modes as well as CH vibrations. We also show that B-CARS imaging can be used to measure spectral signatures of individual cells at least fivefold faster than spontaneous Raman microspectroscopy and can be used to generate maps of biochemical species in cells. This improved spectral range and signal intensity opens the door for more widespread use of vibrational spectroscopic imaging in biology and clinical diagnostics.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0006-3495
1542-0086
DOI:10.1016/j.bpj.2010.08.009