Brain fingerprinting and cognitive behavior predicting using functional connectome of high inter-subject variability

•High inter-subject variability for brain fingerprinting and cognitive behavior predicting.•Conditional deep generative network for extracting shared information of inter-subject.•Embed the state information into the conditional deep generative network.•High accuracy based on a large number of subje...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 295; p. 120651
Main Authors Lu, Jiayu, Yan, Tianyi, Yang, Lan, Zhang, Xi, Li, Jiaxin, Li, Dandan, Xiang, Jie, Wang, Bin
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.07.2024
Elsevier Limited
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:•High inter-subject variability for brain fingerprinting and cognitive behavior predicting.•Conditional deep generative network for extracting shared information of inter-subject.•Embed the state information into the conditional deep generative network.•High accuracy based on a large number of subjects and numerous states.•Higher fingerprinting is useful for resulting in higher behavioral associations. The functional connectivity (FC) graph of the brain has been widely recognized as a ``fingerprint'' that can be used to identify individuals from a group of subjects. Research has indicated that individual identification accuracy can be improved by eliminating the impact of shared information among individuals. However, current research extracts not only shared information of inter-subject but also individual-specific information from FC graphs, resulting in incomplete separation of shared information and fingerprint information among individuals, leading to lower individual identification accuracy across all functional magnetic resonance imaging (fMRI) states session pairs and poor cognitive behavior prediction performance. In this paper, we propose a method to enhance inter-subject variability combining conditional variational autoencoder (CVAE) network and sparse dictionary learning (SDL) module. By embedding fMRI state information in the encoding and decoding processes, the CVAE network can better capture and represent the common features among individuals and enhance inter-subject variability by residual. Our experimental results on Human Connectome Project (HCP) data show that the refined connectomes obtained by using CVAE with SDL can accurately distinguish an individual from the remaining participants. The success accuracies reached 99.7 % and 99.6 % in the session pair rest1-rest2 and reverse rest2-rest1, respectively. In the identification experiment involving task-task combinations carried out on the same day, the identification accuracies ranged from 94.2 % to 98.8 %. Furthermore, we showed the Frontoparietal and Default networks make the most significant contributions to individual identification and the edges that significantly contribute to individual identification are found within and between the Frontoparietal and Default networks. Additionally, high-level cognitive behaviors can also be better predicted with the obtained refined connectomes, suggesting that higher fingerprinting can be useful for resulting in higher behavioral associations. In summary, our proposed framework provides a promising approach to use functional connectivity networks for studying cognition and behavior, promoting a deeper understanding of brain functions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1053-8119
1095-9572
1095-9572
DOI:10.1016/j.neuroimage.2024.120651