Multivariate consistency of resting-state fMRI connectivity maps acquired on a single individual over 2.5 years, 13 sites and 3 vendors
Studies using resting-state functional magnetic resonance imaging (rsfMRI) are increasingly collecting data at multiple sites in order to speed up recruitment or increase sample size. The main objective of this study was to assess the long-term consistency of rsfMRI connectivity maps derived at mult...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 205; p. 116210 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.01.2020
Elsevier Limited Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 1053-8119 1095-9572 1095-9572 |
DOI | 10.1016/j.neuroimage.2019.116210 |
Cover
Loading…
Abstract | Studies using resting-state functional magnetic resonance imaging (rsfMRI) are increasingly collecting data at multiple sites in order to speed up recruitment or increase sample size. The main objective of this study was to assess the long-term consistency of rsfMRI connectivity maps derived at multiple sites and vendors using the Canadian Dementia Imaging Protocol (CDIP, www.cdip-pcid.ca). Nine to 10 min of functional BOLD images were acquired from an adult cognitively healthy volunteer scanned repeatedly at 13 Canadian sites on three scanner makes (General Electric, Philips and Siemens) over the course of 2.5 years. The consistency (spatial Pearson’s correlation) of rsfMRI connectivity maps for seven canonical networks ranged from 0.3 to 0.8, with a negligible effect of time, but significant site and vendor effects. We noted systematic differences in data quality (i.e. head motion, number of useable time frames, temporal signal-to-noise ratio) across vendors, which may also confound some of these results, and could not be disentangled in this sample. We also pooled the long-term longitudinal data with a single-site, short-term (1 month) data sample acquired on 26 subjects (10 scans per subject), called HNU1. Using randomly selected pairs of scans from each subject, we quantified the ability of a data-driven unsupervised cluster analysis to match two scans of the same subjects. In this “fingerprinting” experiment, we found that scans from the Canadian subject (Csub) could be matched with high accuracy intra-site (>95% for some networks), but that the accuracy decreased substantially for scans drawn from different sites and vendors, even falling outside of the range of accuracies observed in HNU1. Overall, our results demonstrate good multivariate stability of rsfMRI measures over several years, but substantial impact of scanning site and vendors. How detrimental these effects are will depend on the application, yet our results demonstrate that new methods for harmonizing multisite analysis represent an important area for future work.
[Display omitted]
•Consistency of rsfMRI connectivity over 2.5 years, 13 sites and 3 scanner vendors.•Time elapsed between scans had negligible effect on consistency.•Consistency decreased due to site and vendor differences.•Accuracy of connectivity fingerprints decreased due to site and vendor differences. |
---|---|
AbstractList | Studies using resting-state functional magnetic resonance imaging (rsfMRI) are increasingly collecting data at multiple sites in order to speed up recruitment or increase sample size. The main objective of this study was to assess the long-term consistency of rsfMRI connectivity maps derived at multiple sites and vendors using the Canadian Dementia Imaging Protocol (CDIP, www.cdip-pcid.ca). Nine to 10 min of functional BOLD images were acquired from an adult cognitively healthy volunteer scanned repeatedly at 13 Canadian sites on three scanner makes (General Electric, Philips and Siemens) over the course of 2.5 years. The consistency (spatial Pearson's correlation) of rsfMRI connectivity maps for seven canonical networks ranged from 0.3 to 0.8, with a negligible effect of time, but significant site and vendor effects. We noted systematic differences in data quality (i.e. head motion, number of useable time frames, temporal signal-to-noise ratio) across vendors, which may also confound some of these results, and could not be disentangled in this sample. We also pooled the long-term longitudinal data with a single-site, short-term (1 month) data sample acquired on 26 subjects (10 scans per subject), called HNU1. Using randomly selected pairs of scans from each subject, we quantified the ability of a data-driven unsupervised cluster analysis to match two scans of the same subjects. In this "fingerprinting" experiment, we found that scans from the Canadian subject (Csub) could be matched with high accuracy intra-site (>95% for some networks), but that the accuracy decreased substantially for scans drawn from different sites and vendors, even falling outside of the range of accuracies observed in HNU1. Overall, our results demonstrate good multivariate stability of rsfMRI measures over several years, but substantial impact of scanning site and vendors. How detrimental these effects are will depend on the application, yet our results demonstrate that new methods for harmonizing multisite analysis represent an important area for future work. Studies using resting-state functional magnetic resonance imaging (rsfMRI) are increasingly collecting data at multiple sites in order to speed up recruitment or increase sample size. The main objective of this study was to assess the long-term consistency of rsfMRI connectivity maps derived at multiple sites and vendors using the Canadian Dementia Imaging Protocol (CDIP, www.cdip-pcid.ca). Nine to 10 min of functional BOLD images were acquired from an adult cognitively healthy volunteer scanned repeatedly at 13 Canadian sites on three scanner makes (General Electric, Philips and Siemens) over the course of 2.5 years. The consistency (spatial Pearson's correlation) of rsfMRI connectivity maps for seven canonical networks ranged from 0.3 to 0.8, with a negligible effect of time, but significant site and vendor effects. We noted systematic differences in data quality (i.e. head motion, number of useable time frames, temporal signal-to-noise ratio) across vendors, which may also confound some of these results, and could not be disentangled in this sample. We also pooled the long-term longitudinal data with a single-site, short-term (1 month) data sample acquired on 26 subjects (10 scans per subject), called HNU1. Using randomly selected pairs of scans from each subject, we quantified the ability of a data-driven unsupervised cluster analysis to match two scans of the same subjects. In this "fingerprinting" experiment, we found that scans from the Canadian subject (Csub) could be matched with high accuracy intra-site (>95% for some networks), but that the accuracy decreased substantially for scans drawn from different sites and vendors, even falling outside of the range of accuracies observed in HNU1. Overall, our results demonstrate good multivariate stability of rsfMRI measures over several years, but substantial impact of scanning site and vendors. How detrimental these effects are will depend on the application, yet our results demonstrate that new methods for harmonizing multisite analysis represent an important area for future work.Studies using resting-state functional magnetic resonance imaging (rsfMRI) are increasingly collecting data at multiple sites in order to speed up recruitment or increase sample size. The main objective of this study was to assess the long-term consistency of rsfMRI connectivity maps derived at multiple sites and vendors using the Canadian Dementia Imaging Protocol (CDIP, www.cdip-pcid.ca). Nine to 10 min of functional BOLD images were acquired from an adult cognitively healthy volunteer scanned repeatedly at 13 Canadian sites on three scanner makes (General Electric, Philips and Siemens) over the course of 2.5 years. The consistency (spatial Pearson's correlation) of rsfMRI connectivity maps for seven canonical networks ranged from 0.3 to 0.8, with a negligible effect of time, but significant site and vendor effects. We noted systematic differences in data quality (i.e. head motion, number of useable time frames, temporal signal-to-noise ratio) across vendors, which may also confound some of these results, and could not be disentangled in this sample. We also pooled the long-term longitudinal data with a single-site, short-term (1 month) data sample acquired on 26 subjects (10 scans per subject), called HNU1. Using randomly selected pairs of scans from each subject, we quantified the ability of a data-driven unsupervised cluster analysis to match two scans of the same subjects. In this "fingerprinting" experiment, we found that scans from the Canadian subject (Csub) could be matched with high accuracy intra-site (>95% for some networks), but that the accuracy decreased substantially for scans drawn from different sites and vendors, even falling outside of the range of accuracies observed in HNU1. Overall, our results demonstrate good multivariate stability of rsfMRI measures over several years, but substantial impact of scanning site and vendors. How detrimental these effects are will depend on the application, yet our results demonstrate that new methods for harmonizing multisite analysis represent an important area for future work. Studies using resting-state functional magnetic resonance imaging (rsfMRI) are increasingly collecting data at multiple sites in order to speed up recruitment or increase sample size. The main objective of this study was to assess the long-term consistency of rsfMRI connectivity maps derived at multiple sites and vendors using the Canadian Dementia Imaging Protocol (CDIP, www.cdip-pcid.ca). Nine to 10 min of functional BOLD images were acquired from an adult cognitively healthy volunteer scanned repeatedly at 13 Canadian sites on three scanner makes (General Electric, Philips and Siemens) over the course of 2.5 years. The consistency (spatial Pearson’s correlation) of rsfMRI connectivity maps for seven canonical networks ranged from 0.3 to 0.8, with a negligible effect of time, but significant site and vendor effects. We noted systematic differences in data quality (i.e. head motion, number of useable time frames, temporal signal-to-noise ratio) across vendors, which may also confound some of these results, and could not be disentangled in this sample. We also pooled the long-term longitudinal data with a single-site, short-term (1 month) data sample acquired on 26 subjects (10 scans per subject), called HNU1. Using randomly selected pairs of scans from each subject, we quantified the ability of a data-driven unsupervised cluster analysis to match two scans of the same subjects. In this “fingerprinting” experiment, we found that scans from the Canadian subject (Csub) could be matched with high accuracy intra-site (>95% for some networks), but that the accuracy decreased substantially for scans drawn from different sites and vendors, even falling outside of the range of accuracies observed in HNU1. Overall, our results demonstrate good multivariate stability of rsfMRI measures over several years, but substantial impact of scanning site and vendors. How detrimental these effects are will depend on the application, yet our results demonstrate that new methods for harmonizing multisite analysis represent an important area for future work. [Display omitted] •Consistency of rsfMRI connectivity over 2.5 years, 13 sites and 3 scanner vendors.•Time elapsed between scans had negligible effect on consistency.•Consistency decreased due to site and vendor differences.•Accuracy of connectivity fingerprints decreased due to site and vendor differences. |
ArticleNumber | 116210 |
Author | Orban, Pierre Collin-Verreault, Yannik Duchesne, Simon Potvin, Olivier Urchs, Sebastian Vogel, Jacob Chouinard, Isabelle Badhwar, AmanPreet Bellec, Pierre |
Author_xml | – sequence: 1 givenname: AmanPreet surname: Badhwar fullname: Badhwar, AmanPreet email: amanpreet.badhwar@criugm.qc.ca organization: Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, Canada – sequence: 2 givenname: Yannik surname: Collin-Verreault fullname: Collin-Verreault, Yannik organization: Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, Canada – sequence: 3 givenname: Pierre surname: Orban fullname: Orban, Pierre organization: Université de Montréal, Montréal, Canada – sequence: 4 givenname: Sebastian surname: Urchs fullname: Urchs, Sebastian organization: Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, Canada – sequence: 5 givenname: Isabelle surname: Chouinard fullname: Chouinard, Isabelle organization: Centre CERVO, Quebec City Mental Health Institute, Quebec, Canada – sequence: 6 givenname: Jacob surname: Vogel fullname: Vogel, Jacob organization: McGill University, Montréal, Canada – sequence: 7 givenname: Olivier surname: Potvin fullname: Potvin, Olivier organization: Centre CERVO, Quebec City Mental Health Institute, Quebec, Canada – sequence: 8 givenname: Simon surname: Duchesne fullname: Duchesne, Simon organization: Centre CERVO, Quebec City Mental Health Institute, Quebec, Canada – sequence: 9 givenname: Pierre surname: Bellec fullname: Bellec, Pierre organization: Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31593793$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkkuP0zAUhSM0iHnAX0CW2LAgxY8kjjcIGPGoNCMkBGvr1r6uXFJ7xk4q9Rfwt3HoDEhddWXL-e5xfM65rM5CDFhVhNEFo6x7u1kEnFL0W1jjglOmFox1nNEn1QWjqq1VK_nZvG9F3TOmzqvLnDeUUsWa_ll1LlirhFTiovp9Ow2j30HyMCIxMWSfRwxmT6IjCfPow7rO4_zR3X5fzkRAUyb8uCdbuMsEzP3kE1oSAwGSCz8g8cEWxE4wkLjDRPiiJXuElN8QJgo0YhkMlgiyw2Bjys-rpw6GjC8e1qvq5-dPP66_1jffviyvP9zUppXtWK9WkhsmraC8bxTHnnU9AEqk4CQKxUGtUDbIGuOAdoxJvmpcyzlXQNEqcVUtD7o2wkbfpWJh2usIXv89iGmtIY3eDKgFWmh711nXqcY5AbKTwkjGnHWyAVe0Xh-07lK8n4pXeuuzwWGAgHHKmgsq-Gw5L-irI3QTpxTKSwvFm77rpOwK9fKBmlZbtP9-7zGuArw7ACbFnBM6bXzJxscwJvCDZlTP_dAb_b8feu6HPvSjCPRHAo93nDD68TCKJZ6dx6Sz8aUpaEv6Ziz--VNE3h-JmMEHb2D4hfvTJP4AtZzxQw |
CitedBy_id | crossref_primary_10_1017_cjn_2021_19 crossref_primary_10_1016_j_jsxm_2022_03_217 crossref_primary_10_1088_1741_2552_abd684 crossref_primary_10_1016_j_neuroimage_2022_119589 crossref_primary_10_1002_hbm_26180 crossref_primary_10_1162_netn_a_00368 crossref_primary_10_1109_TNSRE_2021_3092140 crossref_primary_10_1073_pnas_2320251121 crossref_primary_10_1038_s41596_024_01117_5 crossref_primary_10_1016_j_neuroimage_2021_117864 crossref_primary_10_1162_jocn_a_02278 crossref_primary_10_1016_j_cobeha_2020_12_012 crossref_primary_10_1016_j_dcn_2021_100996 crossref_primary_10_1016_j_autrev_2024_103667 crossref_primary_10_1523_JNEUROSCI_0628_23_2023 crossref_primary_10_1007_s00415_022_11479_z crossref_primary_10_1093_braincomms_fcad262 crossref_primary_10_1016_j_neuroimage_2023_120125 crossref_primary_10_1002_hbm_25046 crossref_primary_10_1113_EP091473 crossref_primary_10_1016_j_nicl_2022_102972 crossref_primary_10_1038_s41380_023_02381_9 crossref_primary_10_1007_s12021_023_09639_1 crossref_primary_10_3389_fendo_2023_1131995 crossref_primary_10_3389_fneur_2022_855125 crossref_primary_10_1002_hbm_26708 crossref_primary_10_1038_s41597_019_0262_8 crossref_primary_10_1111_head_14487 crossref_primary_10_1016_j_neuroimage_2021_118044 |
Cites_doi | 10.2337/db16-0414 10.1016/j.neuroimage.2006.03.062 10.1002/hbm.23157 10.31887/DCNS.2016.18.3/efinn 10.1016/j.neuron.2012.12.028 10.1016/j.neuroimage.2017.01.072 10.1016/j.neuroimage.2013.04.081 10.1016/j.pscychresns.2018.06.004 10.1016/j.neuron.2009.03.024 10.1016/j.neuroimage.2011.10.018 10.1093/schbul/sbw145 10.1002/jmri.20583 10.1016/j.neuroimage.2016.10.020 10.12688/mniopenres.12767.1 10.1038/nm.4246 10.1016/j.neuroimage.2011.07.044 10.1016/j.neuron.2015.06.037 10.3389/fnsys.2012.00069 10.1016/j.neuron.2016.07.031 10.1016/j.neuroimage.2015.07.010 10.1002/mrm.1910340111 10.1016/j.mri.2017.09.001 10.1038/nn.4135 10.1109/MCSE.2007.55 10.1016/j.mri.2009.06.004 10.3389/fnhum.2013.00599 10.1038/npjschz.2015.16 10.1093/cercor/bhx230 10.1038/sdata.2014.49 10.1038/nrn3475 10.3389/fnins.2017.00656 10.1038/sdata.2017.10 10.1111/j.1745-6924.2009.01125.x 10.25080/Majora-92bf1922-00a 10.1016/j.jcm.2016.02.012 10.1177/001316447303300309 10.1016/j.neuron.2017.07.011 10.1152/jn.00338.2011 10.1016/j.neuron.2018.03.035 10.25080/Majora-92bf1922-011 |
ContentType | Journal Article |
Copyright | 2019 Copyright © 2019. Published by Elsevier Inc. Copyright Elsevier Limited Jan 15, 2020 |
Copyright_xml | – notice: 2019 – notice: Copyright © 2019. Published by Elsevier Inc. – notice: Copyright Elsevier Limited Jan 15, 2020 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 DOA |
DOI | 10.1016/j.neuroimage.2019.116210 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PQ Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest One Psychology MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
ExternalDocumentID | oai_doaj_org_article_3eda58f6df694ff3a7673c711fdf74af 31593793 10_1016_j_neuroimage_2019_116210 S1053811919308018 |
Genre | Research Support, Non-U.S. Gov't Multicenter Study Journal Article |
GeographicLocations | Canada |
GeographicLocations_xml | – name: Canada |
GrantInformation_xml | – fundername: CIHR |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 6I. AACTN AADPK AAFTH AAIAV AAQFI ABLVK ABYKQ AFKWA AJOXV AMFUW C45 HMQ LCYCR NCXOZ SNS ZA5 29N 53G AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADXHL AGHFR AGQPQ AGRNS AKRLJ ALIPV ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ R2- RIG SEW WUQ XPP ZMT 0SF CGR CUY CVF ECM EIF NPM 3V. 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 |
ID | FETCH-LOGICAL-c575t-bb72c17d3028492e8168aae7e0af7e392a9be74e14cfa061172b4f52229a0ed93 |
IEDL.DBID | DOA |
ISSN | 1053-8119 1095-9572 |
IngestDate | Wed Aug 27 01:29:27 EDT 2025 Fri Sep 05 08:58:48 EDT 2025 Wed Aug 13 04:58:56 EDT 2025 Wed Feb 19 02:30:14 EST 2025 Thu Apr 24 23:10:36 EDT 2025 Tue Jul 01 03:02:10 EDT 2025 Fri Feb 23 02:41:42 EST 2024 Tue Aug 26 20:02:29 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Resting-state fMRI Longitudinal Fingerprinting Consistency Multisite |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2019. Published by Elsevier Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c575t-bb72c17d3028492e8168aae7e0af7e392a9be74e14cfa061172b4f52229a0ed93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/3eda58f6df694ff3a7673c711fdf74af |
PMID | 31593793 |
PQID | 2324866776 |
PQPubID | 2031077 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3eda58f6df694ff3a7673c711fdf74af proquest_miscellaneous_2303209142 proquest_journals_2324866776 pubmed_primary_31593793 crossref_citationtrail_10_1016_j_neuroimage_2019_116210 crossref_primary_10_1016_j_neuroimage_2019_116210 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2019_116210 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2019_116210 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-15 |
PublicationDateYYYYMMDD | 2020-01-15 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2020 |
Publisher | Elsevier Inc Elsevier Limited Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Elsevier |
References | Gordon, Laumann, Gilmore, Newbold, Greene, Berg, Ortega, Hoyt-Drazen, Gratton, Sun, Hampton, Coalson, Nguyen, McDermott, Shimony, Snyder, Schlaggar, Petersen, Nelson, Dosenbach (bib20) 2017; 95 Skåtun, Kaufmann, Doan, Alnæs, Córdova-Palomera, Jönsson, Fatouros-Bergman, Flyckt, KaSP, Melle, Andreassen, Agartz, Westlye (bib44) 2017; 43 Li, Satterthwaite, Fan (bib29) 2018 Koo, Li (bib27) 2016; 15 Zuo, Anderson, Bellec, Birn, Biswal, Blautzik, Breitner, Buckner, Calhoun, Castellanos, Chen, Chen, Chen, Chen, Colcombe, Courtney, Craddock, Di Martino, Dong, Fu, Gong, Gorgolewski, Han, He, He, Ho, Holmes, Hou, Huckins, Jiang, Jiang, Kelley, Kelly, King, LaConte, Lainhart, Lei, Li, Li, Li, Lin, Liu, Liu, Liu, Liu, Lu, Lu, Luna, Luo, Lurie, Mao, Margulies, Mayer, Meindl, Meyerand, Nan, Nielsen, O’Connor, Paulsen, Prabhakaran, Qi, Qiu, Shao, Shehzad, Tang, Villringer, Wang, Wang, Wei, Wei, Weng, Wu, Xu, Yang, Yang, Zang, Zhang, Zhang, Zhang, Zhang, Zhao, Zhen, Zhou, Zhu, Milham (bib51) 2014; 1 Orban, Dansereau, Desbois, Mongeau-Pérusse, Giguère, Nguyen, Mendrek, Stip, Bellec (bib38) 2017 Saggar, Tsalikian, Mauras, Mazaika, White, Weinzimer, Buckingham, Hershey, Reiss (bib41) 2017; 66 Togo, Rokicki, Yoshinaga, Hisatsune, Matsuda, Haga, Hanakawa (bib45) 2017; 11 Gratton, Laumann, Nielsen, Greene, Gordon, Gilmore, Nelson, Coalson, Snyder, Schlaggar, Dosenbach, Petersen (bib21) 2018; 98 Matthews, Hampshire (bib31) 2016; 91 Drysdale, Grosenick, Downar, Dunlop, Mansouri, Meng, Fetcho, Zebley, Oathes, Etkin, Schatzberg, Sudheimer, Keller, Mayberg, Gunning, Alexopoulos, Fox, Pascual-Leone, Voss, Casey, Dubin, Liston (bib13) 2017; 23 Ad-Dab’bagh, Lyttelton, Muehlboeck, Lepage, Einarson, Mok, Ivanov, Vincent, Lerch, Fombonne, Others (bib2) 2006 Dong, Toledo, Honnorat, Doshi, Varol, Sotiras, Wolk, Trojanowski, Davatzikos, Alzheimer’s Disease Neuroimaging Initiative (bib12) 2017; 140 Friedman, Glover (bib17) 2006; 23 Marchitelli, Minati, Marizzoni, Bosch, Bartrés-Faz, Müller, Wiltfang, Fiedler, Roccatagliata, Picco, Nobili, Blin, Bombois, Lopes, Bordet, Sein, Ranjeva, Didic, Gros-Dagnac, Payoux, Zoccatelli, Alessandrini, Beltramello, Bargalló, Ferretti, Caulo, Aiello, Cavaliere, Soricelli, Parnetti, Tarducci, Floridi, Tsolaki, Constantinidis, Drevelegas, Rossini, Marra, Schönknecht, Hensch, Hoffmann, Kuijer, Visser, Barkhof, Frisoni, Jovicich (bib30) 2016; 37 Urchs, Armoza, Benhajali, St-Aubin, Orban, Bellec (bib46) 2017; 1 Di Martino, O’Connor, Chen, Alaerts, Anderson, Assaf, Balsters, Baxter, Beggiato, Bernaerts, Blanken, Bookheimer, Braden, Byrge, Castellanos, Dapretto, Delorme, Fair, Fishman, Fitzgerald, Gallagher, Keehn, Kennedy, Lainhart, Luna, Mostofsky, Müller, Nebel, Nigg, O’Hearn, Solomon, Toro, Vaidya, Wenderoth, White, Craddock, Lord, Leventhal, Milham (bib11) 2017; 4 Van Dijk, Sabuncu, Buckner (bib47) 2012; 59 Hawco, Viviano, Chavez, Dickie, Calarco, Kochunov, Argyelan, Turner, Malhotra, Buchanan, Voineskos, SPINS Group (bib22) 2018 Jones, Oliphant, Peterson (bib25) 2016 Power, Barnes, Snyder, Schlaggar, Petersen (bib40) 2012; 59 Cicchetti, Sparrow (bib9) 1981; 86 Laumann, Gordon, Adeyemo, Snyder, Joo, Chen, Gilmore, McDermott, Nelson, Dosenbach, Schlaggar, Mumford, Poldrack, Petersen (bib28) 2015; 87 Seabold, Perktold (bib42) 2010 Hunter (bib23) 2007; 9 Finn, Shen, Scheinost, Rosenberg, Huang, Chun, Papademetris, Constable (bib14) 2015; 18 Friedman, Glover, Krenz, Magnotta, FIRST (bib18) 2006; 32 Brown, Sidhu, Greiner, Asgarian, Bastani, Silverstone, Greenshaw, Dursun (bib6) 2012; 6 Noble, Spann, Tokoglu, Shen, Constable, Scheinost (bib36) 2017; 27 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (bib39) 2011; 12 Oliphant (bib37) 2006 Abraham, Milham, Martino, Craddock, Samaras, Thirion, Varoquaux (bib1) 2016 Nielsen, Zielinski, Fletcher, Alexander, Lange, Bigler, Lainhart, Anderson (bib34) 2013; 7 Bellec, Carbonell, Perlbarg, Lepage, Lyttelton, Fonov, Janke, Tohka, Evans (bib5) 2011 Yeo, Krienen, Sepulcre, Sabuncu, Lashkari, Hollinshead, Roffman, Smoller, Zöllei, Polimeni, Fischl, Liu, Buckner (bib50) 2011; 106 Dansereau, Benhajali, Risterucci, Pich, Orban, Arnold, Bellec (bib10) 2017; 149 Noble, Scheinost, Finn, Shen, Papademetris, McEwen, Bearden, Addington, Goodyear, Cadenhead, Mirzakhanian, Cornblatt, Olvet, Mathalon, McGlashan, Perkins, Belger, Seidman, Thermenos, Tsuang, van Erp, Walker, Hamann, Woods, Cannon, Constable (bib35) 2017; 146 Seeley, Crawford, Zhou, Miller, Greicius (bib43) 2009; 62 An, Moon, Ryu, Park, Yun, Choi, Jahng, Park (bib3) 2017; 44 Badhwar, Tam, Dansereau, Orban, Hoffstaedter, Bellec (bib4) 2017; 8 Vul, Harris, Winkielman, Pashler (bib48) 2009; 4 Fleiss, Cohen (bib16) 1973; 33 Mueller, Wang, Fox, Yeo, Sepulcre, Sabuncu, Shafee, Lu, Liu (bib33) 2013; 77 Giove, Gili, Iacovella, Macaluso, Maraviglia (bib19) 2009; 27 McKinney, Others (bib32) 2010 Yan, Craddock, Zuo, Zang, Milham (bib49) 2013; 80 Jezzard, Balaban (bib24) 1995; 34 Button, Ioannidis, Mokrysz, Nosek, Flint, Robinson, Munafò (bib7) 2013; 14 Finn, Todd Constable (bib15) 2016; 18 Van Essen (bib52) 2005 Cheng, Palaniyappan, Li, Kendrick, Zhang, Luo, Liu, Yu, Deng, Wang, Ma, Guo, Francis, Liddle, Mayer, Schumann, Li, Feng (bib8) 2015; 1 Jovicich, Minati, Marizzoni, Marchitelli, Sala-Llonch, Bartrés-Faz, Arnold, Benninghoff, Fiedler, Roccatagliata, Picco, Nobili, Blin, Bombois, Lopes, Bordet, Sein, Ranjeva, Didic, Gros-Dagnac, Payoux, Zoccatelli, Alessandrini, Beltramello, Bargalló, Ferretti, Caulo, Aiello, Cavaliere, Soricelli, Parnetti, Tarducci, Floridi, Tsolaki, Constantinidis, Drevelegas, Rossini, Marra, Schönknecht, Hensch, Hoffmann, Kuijer, Visser, Barkhof, Frisoni, Consortium (bib26) 2016; 124 McKinney (10.1016/j.neuroimage.2019.116210_bib32) 2010 Noble (10.1016/j.neuroimage.2019.116210_bib36) 2017; 27 Urchs (10.1016/j.neuroimage.2019.116210_bib46) 2017; 1 Giove (10.1016/j.neuroimage.2019.116210_bib19) 2009; 27 An (10.1016/j.neuroimage.2019.116210_bib3) 2017; 44 Orban (10.1016/j.neuroimage.2019.116210_bib38) 2017 Fleiss (10.1016/j.neuroimage.2019.116210_bib16) 1973; 33 Noble (10.1016/j.neuroimage.2019.116210_bib35) 2017; 146 Yeo (10.1016/j.neuroimage.2019.116210_bib50) 2011; 106 Finn (10.1016/j.neuroimage.2019.116210_bib15) 2016; 18 Bellec (10.1016/j.neuroimage.2019.116210_bib5) 2011 Hunter (10.1016/j.neuroimage.2019.116210_bib23) 2007; 9 Button (10.1016/j.neuroimage.2019.116210_bib7) 2013; 14 Skåtun (10.1016/j.neuroimage.2019.116210_bib44) 2017; 43 Li (10.1016/j.neuroimage.2019.116210_bib29) 2018 Abraham (10.1016/j.neuroimage.2019.116210_bib1) 2016 Saggar (10.1016/j.neuroimage.2019.116210_bib41) 2017; 66 Matthews (10.1016/j.neuroimage.2019.116210_bib31) 2016; 91 Dansereau (10.1016/j.neuroimage.2019.116210_bib10) 2017; 149 Marchitelli (10.1016/j.neuroimage.2019.116210_bib30) 2016; 37 Brown (10.1016/j.neuroimage.2019.116210_bib6) 2012; 6 Pedregosa (10.1016/j.neuroimage.2019.116210_bib39) 2011; 12 Zuo (10.1016/j.neuroimage.2019.116210_bib51) 2014; 1 Friedman (10.1016/j.neuroimage.2019.116210_bib18) 2006; 32 Seabold (10.1016/j.neuroimage.2019.116210_bib42) 2010 Di Martino (10.1016/j.neuroimage.2019.116210_bib11) 2017; 4 Nielsen (10.1016/j.neuroimage.2019.116210_bib34) 2013; 7 Gordon (10.1016/j.neuroimage.2019.116210_bib20) 2017; 95 Ad-Dab’bagh (10.1016/j.neuroimage.2019.116210_bib2) 2006 Togo (10.1016/j.neuroimage.2019.116210_bib45) 2017; 11 Jones (10.1016/j.neuroimage.2019.116210_bib25) 2016 Vul (10.1016/j.neuroimage.2019.116210_bib48) 2009; 4 Hawco (10.1016/j.neuroimage.2019.116210_bib22) 2018 Gratton (10.1016/j.neuroimage.2019.116210_bib21) 2018; 98 Drysdale (10.1016/j.neuroimage.2019.116210_bib13) 2017; 23 Seeley (10.1016/j.neuroimage.2019.116210_bib43) 2009; 62 Cheng (10.1016/j.neuroimage.2019.116210_bib8) 2015; 1 Power (10.1016/j.neuroimage.2019.116210_bib40) 2012; 59 Jezzard (10.1016/j.neuroimage.2019.116210_bib24) 1995; 34 Mueller (10.1016/j.neuroimage.2019.116210_bib33) 2013; 77 Cicchetti (10.1016/j.neuroimage.2019.116210_bib9) 1981; 86 Finn (10.1016/j.neuroimage.2019.116210_bib14) 2015; 18 Van Essen (10.1016/j.neuroimage.2019.116210_bib52) 2005 Laumann (10.1016/j.neuroimage.2019.116210_bib28) 2015; 87 Oliphant (10.1016/j.neuroimage.2019.116210_bib37) 2006 Dong (10.1016/j.neuroimage.2019.116210_bib12) 2017; 140 Jovicich (10.1016/j.neuroimage.2019.116210_bib26) 2016; 124 Yan (10.1016/j.neuroimage.2019.116210_bib49) 2013; 80 Badhwar (10.1016/j.neuroimage.2019.116210_bib4) 2017; 8 Van Dijk (10.1016/j.neuroimage.2019.116210_bib47) 2012; 59 Friedman (10.1016/j.neuroimage.2019.116210_bib17) 2006; 23 Koo (10.1016/j.neuroimage.2019.116210_bib27) 2016; 15 |
References_xml | – volume: 15 start-page: 155 year: 2016 end-page: 163 ident: bib27 article-title: A guideline of selecting and reporting intraclass correlation coefficients for reliability research publication-title: J. Chiropr. Med. – start-page: 2735 year: 2011 end-page: 2746 ident: bib5 article-title: A neuroimaging analysis kit for Matlab and Octave publication-title: Proceedings of the 17th International Conference on Functional Mapping of the Human Brain – volume: 27 start-page: 5415 year: 2017 end-page: 5429 ident: bib36 article-title: Influences on the test-retest reliability of functional connectivity MRI and its relationship with behavioral utility publication-title: Cerebr. Cortex – volume: 1 start-page: 15016 year: 2015 ident: bib8 article-title: Voxel-based, brain-wide association study of aberrant functional connectivity in schizophrenia implicates thalamocortical circuitry publication-title: NPJ Schizophr. – volume: 18 start-page: 277 year: 2016 end-page: 287 ident: bib15 article-title: Individual variation in functional brain connectivity: implications for personalized approaches to psychiatric disease publication-title: Dialogues Clin. Neurosci. – start-page: 101 year: 2018 end-page: 104 ident: bib29 article-title: Brain age prediction based ON resting-state functional connectivity patterns using convolutional neural networks publication-title: Proc. IEEE Int. Symp. Biomed. Imaging – start-page: 2266 year: 2006 ident: bib2 article-title: The CIVET image-processing environment: a fully automated comprehensive pipeline for anatomical neuroimaging research publication-title: Proceedings of the 12th Annual Meeting of the Organization for Human Brain Mapping. Florence, Italy – volume: 4 start-page: 274 year: 2009 end-page: 290 ident: bib48 article-title: Puzzlingly high correlations in fMRI studies of emotion, personality, and social cognition publication-title: Perspect. Psychol. Sci. – start-page: 61 year: 2010 ident: bib42 article-title: Statsmodels: econometric and statistical modeling with python publication-title: Proceedings of the 9th Python in Science Conference – volume: 149 start-page: 220 year: 2017 end-page: 232 ident: bib10 article-title: Statistical power and prediction accuracy in multisite resting-state fMRI connectivity publication-title: Neuroimage – volume: 146 start-page: 959 year: 2017 end-page: 970 ident: bib35 article-title: Multisite reliability of MR-based functional connectivity publication-title: Neuroimage – year: 2005 ident: bib52 article-title: (Neuroinformatics) publication-title: Databasing the Brain: From Data to Knowledge – volume: 6 start-page: 69 year: 2012 ident: bib6 article-title: ADHD-200 Global Competition: diagnosing ADHD using personal characteristic data can outperform resting state fMRI measurements publication-title: Front. Syst. Neurosci. – volume: 86 start-page: 127 year: 1981 end-page: 137 ident: bib9 article-title: Developing criteria for establishing interrater reliability of specific items: applications to assessment of adaptive behavior publication-title: Am. J. Ment. Defic. – volume: 37 start-page: 2114 year: 2016 end-page: 2132 ident: bib30 article-title: Test-retest reliability of the default mode network in a multi-centric fMRI study of healthy elderly: effects of data-driven physiological noise correction techniques publication-title: Hum. Brain Mapp. – volume: 80 start-page: 246 year: 2013 end-page: 262 ident: bib49 article-title: Standardizing the intrinsic brain: towards robust measurement of inter-individual variation in 1000 functional connectomes publication-title: Neuroimage – start-page: 51 year: 2010 end-page: 56 ident: bib32 article-title: Data structures for statistical computing in python publication-title: Proceedings of the 9th Python in Science Conference. Austin, TX – volume: 9 start-page: 90 year: 2007 end-page: 95 ident: bib23 article-title: Matplotlib: a 2D graphics environment publication-title: Comput. Sci. Eng. – volume: 59 start-page: 2142 year: 2012 end-page: 2154 ident: bib40 article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion publication-title: Neuroimage – volume: 1 start-page: 140049 year: 2014 ident: bib51 article-title: An open science resource for establishing reliability and reproducibility in functional connectomics publication-title: Sci. Data – volume: 4 start-page: 170010 year: 2017 ident: bib11 article-title: Enhancing studies of the connectome in autism using the autism brain imaging data exchange II publication-title: Sci. Data – volume: 91 start-page: 511 year: 2016 end-page: 528 ident: bib31 article-title: Clinical concepts emerging from fMRI functional connectomics publication-title: Neuron – volume: 7 start-page: 599 year: 2013 ident: bib34 article-title: Multisite functional connectivity MRI classification of autism: ABIDE results publication-title: Front. Hum. Neurosci. – year: 2017 ident: bib38 article-title: Multisite generalizability of schizophrenia diagnosis classification based on functional brain connectivity publication-title: Schizophr. Res. – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: bib39 article-title: Scikit-learn: machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 27 start-page: 1058 year: 2009 end-page: 1064 ident: bib19 article-title: Images-based suppression of unwanted global signals in resting-state functional connectivity studies publication-title: Magn. Reson. Imaging – volume: 1 start-page: 3 year: 2017 ident: bib46 article-title: MIST: a multi-resolution parcellation of functional brain networks publication-title: MNI Open Res. – volume: 8 start-page: 73 year: 2017 end-page: 85 ident: bib4 article-title: Resting-state network dysfunction in Alzheimer’s disease: a systematic review and meta-analysis publication-title: Alzheimer’s Dementia – volume: 23 start-page: 28 year: 2017 end-page: 38 ident: bib13 article-title: Resting-state connectivity biomarkers define neurophysiological subtypes of depression publication-title: Nat. Med. – volume: 59 start-page: 431 year: 2012 end-page: 438 ident: bib47 article-title: The influence of head motion on intrinsic functional connectivity MRI publication-title: Neuroimage – volume: 18 start-page: 1664 year: 2015 end-page: 1671 ident: bib14 article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity publication-title: Nat. Neurosci. – volume: 62 start-page: 42 year: 2009 end-page: 52 ident: bib43 article-title: Neurodegenerative diseases target large-scale human brain networks publication-title: Neuron – volume: 23 start-page: 827 year: 2006 end-page: 839 ident: bib17 article-title: Report on a multicenter fMRI quality assurance protocol publication-title: J. Magn. Reson. Imaging – volume: 87 start-page: 657 year: 2015 end-page: 670 ident: bib28 article-title: Functional system and areal organization of a highly sampled individual human brain publication-title: Neuron – year: 2016 ident: bib25 article-title: Others. SciPy: Open Source Scientific Tools for Python. 2001 – volume: 106 start-page: 1125 year: 2011 end-page: 1165 ident: bib50 article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity publication-title: J. Neurophysiol. – volume: 124 start-page: 442 year: 2016 end-page: 454 ident: bib26 article-title: Longitudinal reproducibility of default-mode network connectivity in healthy elderly participants: a multicentric resting-state fMRI study publication-title: Neuroimage – volume: 32 start-page: 1656 year: 2006 end-page: 1668 ident: bib18 article-title: Reducing inter-scanner variability of activation in a multicenter fMRI study: role of smoothness equalization publication-title: Neuroimage – volume: 98 start-page: 439 year: 2018 end-page: 452 ident: bib21 article-title: Functional brain networks are dominated by stable group and individual factors, not cognitive or daily variation publication-title: Neuron – year: 2018 ident: bib22 article-title: A longitudinal human phantom reliability study of multi-center T1-weighted, DTI, and resting state fMRI data publication-title: Psychiatry Res. Neuroimaging – volume: 14 start-page: 365 year: 2013 ident: bib7 article-title: Power failure: why small sample size undermines the reliability of neuroscience publication-title: Nat. Rev. Neurosci. – volume: 44 start-page: 125 year: 2017 end-page: 130 ident: bib3 article-title: Inter-vender and test-retest reliabilities of resting-state functional magnetic resonance imaging: implications for multi-center imaging studies publication-title: Magn. Reson. Imaging – year: 2006 ident: bib37 article-title: A Guide to NumPy – volume: 66 start-page: 754 year: 2017 end-page: 762 ident: bib41 article-title: Compensatory hyperconnectivity in developing brains of young children with type 1 diabetes publication-title: Diabetes – volume: 43 start-page: 914 year: 2017 end-page: 924 ident: bib44 article-title: Consistent functional connectivity alterations in schizophrenia spectrum disorder: a multisite study publication-title: Schizophr. Bull. – year: 2016 ident: bib1 article-title: Deriving reproducible biomarkers from multi-site resting-state data: an Autism-based example publication-title: Neuroimage – volume: 95 start-page: 791 year: 2017 end-page: 807 ident: bib20 article-title: Precision functional mapping of individual human brains publication-title: Neuron – volume: 77 start-page: 586 year: 2013 end-page: 595 ident: bib33 article-title: Individual variability in functional connectivity architecture of the human brain publication-title: Neuron – volume: 33 start-page: 613 year: 1973 end-page: 619 ident: bib16 article-title: The equivalence of weighted kappa and the intraclass correlation coefficient as measures of reliability publication-title: Educ. Psychol. Meas. – volume: 11 start-page: 656 year: 2017 ident: bib45 article-title: Effects of field-map distortion correction on resting state functional connectivity MRI publication-title: Front. Neurosci. – volume: 34 start-page: 65 year: 1995 end-page: 73 ident: bib24 article-title: Correction for geometric distortion in echo planar images from B0 field variations publication-title: Magn. Reson. Med. – volume: 140 start-page: 735 year: 2017 end-page: 747 ident: bib12 article-title: Heterogeneity of neuroanatomical patterns in prodromal Alzheimer’s disease: links to cognition, progression and biomarkers publication-title: Brain – volume: 66 start-page: 754 year: 2017 ident: 10.1016/j.neuroimage.2019.116210_bib41 article-title: Compensatory hyperconnectivity in developing brains of young children with type 1 diabetes publication-title: Diabetes doi: 10.2337/db16-0414 – volume: 32 start-page: 1656 year: 2006 ident: 10.1016/j.neuroimage.2019.116210_bib18 article-title: Reducing inter-scanner variability of activation in a multicenter fMRI study: role of smoothness equalization publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.03.062 – volume: 37 start-page: 2114 year: 2016 ident: 10.1016/j.neuroimage.2019.116210_bib30 article-title: Test-retest reliability of the default mode network in a multi-centric fMRI study of healthy elderly: effects of data-driven physiological noise correction techniques publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23157 – volume: 18 start-page: 277 year: 2016 ident: 10.1016/j.neuroimage.2019.116210_bib15 article-title: Individual variation in functional brain connectivity: implications for personalized approaches to psychiatric disease publication-title: Dialogues Clin. Neurosci. doi: 10.31887/DCNS.2016.18.3/efinn – volume: 77 start-page: 586 year: 2013 ident: 10.1016/j.neuroimage.2019.116210_bib33 article-title: Individual variability in functional connectivity architecture of the human brain publication-title: Neuron doi: 10.1016/j.neuron.2012.12.028 – volume: 149 start-page: 220 year: 2017 ident: 10.1016/j.neuroimage.2019.116210_bib10 article-title: Statistical power and prediction accuracy in multisite resting-state fMRI connectivity publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.01.072 – volume: 80 start-page: 246 year: 2013 ident: 10.1016/j.neuroimage.2019.116210_bib49 article-title: Standardizing the intrinsic brain: towards robust measurement of inter-individual variation in 1000 functional connectomes publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.04.081 – year: 2016 ident: 10.1016/j.neuroimage.2019.116210_bib1 article-title: Deriving reproducible biomarkers from multi-site resting-state data: an Autism-based example publication-title: Neuroimage – year: 2006 ident: 10.1016/j.neuroimage.2019.116210_bib37 – year: 2018 ident: 10.1016/j.neuroimage.2019.116210_bib22 article-title: A longitudinal human phantom reliability study of multi-center T1-weighted, DTI, and resting state fMRI data publication-title: Psychiatry Res. Neuroimaging doi: 10.1016/j.pscychresns.2018.06.004 – volume: 62 start-page: 42 year: 2009 ident: 10.1016/j.neuroimage.2019.116210_bib43 article-title: Neurodegenerative diseases target large-scale human brain networks publication-title: Neuron doi: 10.1016/j.neuron.2009.03.024 – year: 2016 ident: 10.1016/j.neuroimage.2019.116210_bib25 – start-page: 2735 year: 2011 ident: 10.1016/j.neuroimage.2019.116210_bib5 article-title: A neuroimaging analysis kit for Matlab and Octave – volume: 59 start-page: 2142 year: 2012 ident: 10.1016/j.neuroimage.2019.116210_bib40 article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.10.018 – volume: 43 start-page: 914 year: 2017 ident: 10.1016/j.neuroimage.2019.116210_bib44 article-title: Consistent functional connectivity alterations in schizophrenia spectrum disorder: a multisite study publication-title: Schizophr. Bull. doi: 10.1093/schbul/sbw145 – volume: 23 start-page: 827 year: 2006 ident: 10.1016/j.neuroimage.2019.116210_bib17 article-title: Report on a multicenter fMRI quality assurance protocol publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.20583 – volume: 146 start-page: 959 year: 2017 ident: 10.1016/j.neuroimage.2019.116210_bib35 article-title: Multisite reliability of MR-based functional connectivity publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.10.020 – volume: 1 start-page: 3 year: 2017 ident: 10.1016/j.neuroimage.2019.116210_bib46 article-title: MIST: a multi-resolution parcellation of functional brain networks publication-title: MNI Open Res. doi: 10.12688/mniopenres.12767.1 – volume: 86 start-page: 127 year: 1981 ident: 10.1016/j.neuroimage.2019.116210_bib9 article-title: Developing criteria for establishing interrater reliability of specific items: applications to assessment of adaptive behavior publication-title: Am. J. Ment. Defic. – volume: 23 start-page: 28 year: 2017 ident: 10.1016/j.neuroimage.2019.116210_bib13 article-title: Resting-state connectivity biomarkers define neurophysiological subtypes of depression publication-title: Nat. Med. doi: 10.1038/nm.4246 – volume: 59 start-page: 431 year: 2012 ident: 10.1016/j.neuroimage.2019.116210_bib47 article-title: The influence of head motion on intrinsic functional connectivity MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.07.044 – volume: 87 start-page: 657 year: 2015 ident: 10.1016/j.neuroimage.2019.116210_bib28 article-title: Functional system and areal organization of a highly sampled individual human brain publication-title: Neuron doi: 10.1016/j.neuron.2015.06.037 – volume: 6 start-page: 69 year: 2012 ident: 10.1016/j.neuroimage.2019.116210_bib6 article-title: ADHD-200 Global Competition: diagnosing ADHD using personal characteristic data can outperform resting state fMRI measurements publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2012.00069 – volume: 91 start-page: 511 year: 2016 ident: 10.1016/j.neuroimage.2019.116210_bib31 article-title: Clinical concepts emerging from fMRI functional connectomics publication-title: Neuron doi: 10.1016/j.neuron.2016.07.031 – volume: 124 start-page: 442 year: 2016 ident: 10.1016/j.neuroimage.2019.116210_bib26 article-title: Longitudinal reproducibility of default-mode network connectivity in healthy elderly participants: a multicentric resting-state fMRI study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.07.010 – volume: 34 start-page: 65 year: 1995 ident: 10.1016/j.neuroimage.2019.116210_bib24 article-title: Correction for geometric distortion in echo planar images from B0 field variations publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910340111 – volume: 44 start-page: 125 year: 2017 ident: 10.1016/j.neuroimage.2019.116210_bib3 article-title: Inter-vender and test-retest reliabilities of resting-state functional magnetic resonance imaging: implications for multi-center imaging studies publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2017.09.001 – volume: 18 start-page: 1664 year: 2015 ident: 10.1016/j.neuroimage.2019.116210_bib14 article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity publication-title: Nat. Neurosci. doi: 10.1038/nn.4135 – volume: 9 start-page: 90 year: 2007 ident: 10.1016/j.neuroimage.2019.116210_bib23 article-title: Matplotlib: a 2D graphics environment publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2007.55 – volume: 27 start-page: 1058 year: 2009 ident: 10.1016/j.neuroimage.2019.116210_bib19 article-title: Images-based suppression of unwanted global signals in resting-state functional connectivity studies publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2009.06.004 – volume: 7 start-page: 599 year: 2013 ident: 10.1016/j.neuroimage.2019.116210_bib34 article-title: Multisite functional connectivity MRI classification of autism: ABIDE results publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2013.00599 – start-page: 101 year: 2018 ident: 10.1016/j.neuroimage.2019.116210_bib29 article-title: Brain age prediction based ON resting-state functional connectivity patterns using convolutional neural networks publication-title: Proc. IEEE Int. Symp. Biomed. Imaging – volume: 140 start-page: 735 year: 2017 ident: 10.1016/j.neuroimage.2019.116210_bib12 article-title: Heterogeneity of neuroanatomical patterns in prodromal Alzheimer’s disease: links to cognition, progression and biomarkers publication-title: Brain – volume: 1 start-page: 15016 year: 2015 ident: 10.1016/j.neuroimage.2019.116210_bib8 article-title: Voxel-based, brain-wide association study of aberrant functional connectivity in schizophrenia implicates thalamocortical circuitry publication-title: NPJ Schizophr. doi: 10.1038/npjschz.2015.16 – volume: 27 start-page: 5415 year: 2017 ident: 10.1016/j.neuroimage.2019.116210_bib36 article-title: Influences on the test-retest reliability of functional connectivity MRI and its relationship with behavioral utility publication-title: Cerebr. Cortex doi: 10.1093/cercor/bhx230 – volume: 1 start-page: 140049 year: 2014 ident: 10.1016/j.neuroimage.2019.116210_bib51 article-title: An open science resource for establishing reliability and reproducibility in functional connectomics publication-title: Sci. Data doi: 10.1038/sdata.2014.49 – year: 2017 ident: 10.1016/j.neuroimage.2019.116210_bib38 article-title: Multisite generalizability of schizophrenia diagnosis classification based on functional brain connectivity publication-title: Schizophr. Res. – volume: 14 start-page: 365 year: 2013 ident: 10.1016/j.neuroimage.2019.116210_bib7 article-title: Power failure: why small sample size undermines the reliability of neuroscience publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3475 – volume: 11 start-page: 656 year: 2017 ident: 10.1016/j.neuroimage.2019.116210_bib45 article-title: Effects of field-map distortion correction on resting state functional connectivity MRI publication-title: Front. Neurosci. doi: 10.3389/fnins.2017.00656 – volume: 4 start-page: 170010 year: 2017 ident: 10.1016/j.neuroimage.2019.116210_bib11 article-title: Enhancing studies of the connectome in autism using the autism brain imaging data exchange II publication-title: Sci. Data doi: 10.1038/sdata.2017.10 – volume: 8 start-page: 73 year: 2017 ident: 10.1016/j.neuroimage.2019.116210_bib4 article-title: Resting-state network dysfunction in Alzheimer’s disease: a systematic review and meta-analysis publication-title: Alzheimer’s Dementia – volume: 4 start-page: 274 year: 2009 ident: 10.1016/j.neuroimage.2019.116210_bib48 article-title: Puzzlingly high correlations in fMRI studies of emotion, personality, and social cognition publication-title: Perspect. Psychol. Sci. doi: 10.1111/j.1745-6924.2009.01125.x – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.neuroimage.2019.116210_bib39 article-title: Scikit-learn: machine learning in Python publication-title: J. Mach. Learn. Res. – start-page: 2266 year: 2006 ident: 10.1016/j.neuroimage.2019.116210_bib2 article-title: The CIVET image-processing environment: a fully automated comprehensive pipeline for anatomical neuroimaging research – start-page: 51 year: 2010 ident: 10.1016/j.neuroimage.2019.116210_bib32 article-title: Data structures for statistical computing in python doi: 10.25080/Majora-92bf1922-00a – year: 2005 ident: 10.1016/j.neuroimage.2019.116210_bib52 article-title: (Neuroinformatics) – volume: 15 start-page: 155 year: 2016 ident: 10.1016/j.neuroimage.2019.116210_bib27 article-title: A guideline of selecting and reporting intraclass correlation coefficients for reliability research publication-title: J. Chiropr. Med. doi: 10.1016/j.jcm.2016.02.012 – volume: 33 start-page: 613 year: 1973 ident: 10.1016/j.neuroimage.2019.116210_bib16 article-title: The equivalence of weighted kappa and the intraclass correlation coefficient as measures of reliability publication-title: Educ. Psychol. Meas. doi: 10.1177/001316447303300309 – volume: 95 start-page: 791 year: 2017 ident: 10.1016/j.neuroimage.2019.116210_bib20 article-title: Precision functional mapping of individual human brains publication-title: Neuron doi: 10.1016/j.neuron.2017.07.011 – volume: 106 start-page: 1125 year: 2011 ident: 10.1016/j.neuroimage.2019.116210_bib50 article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity publication-title: J. Neurophysiol. doi: 10.1152/jn.00338.2011 – volume: 98 start-page: 439 year: 2018 ident: 10.1016/j.neuroimage.2019.116210_bib21 article-title: Functional brain networks are dominated by stable group and individual factors, not cognitive or daily variation publication-title: Neuron doi: 10.1016/j.neuron.2018.03.035 – start-page: 61 year: 2010 ident: 10.1016/j.neuroimage.2019.116210_bib42 article-title: Statsmodels: econometric and statistical modeling with python doi: 10.25080/Majora-92bf1922-011 |
SSID | ssj0009148 |
Score | 2.476956 |
Snippet | Studies using resting-state functional magnetic resonance imaging (rsfMRI) are increasingly collecting data at multiple sites in order to speed up recruitment... |
SourceID | doaj proquest pubmed crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 116210 |
SubjectTerms | Adult Brain - diagnostic imaging Canada Cluster Analysis Connectome - instrumentation Connectome - standards Consistency Dementia disorders Fingerprinting Functional magnetic resonance imaging Humans Initiatives Longitudinal Longitudinal Studies Machine learning Magnetic Resonance Imaging - instrumentation Magnetic Resonance Imaging - standards Medical imaging Multicenter Studies as Topic - standards Multisite Multivariate analysis Research Design Resting-state fMRI Scanners Studies |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqHhAXBOWV0lZG4ki68SNxIk5QtSpIywGo1Jvl-IGC2mS12SL1wpW_zUzipPSAtBLXrGdl2TPffLbnQcgbWQJHULZOfZHJVBop0pJXJvXOw2nBqzIzeN-x_FycX8hPl_nlDjmZcmEwrDJi_4jpA1rHL4u4motV0yy-AjMAdwPnjUoA7WGY8Culwvr5x7_uwjwqJsd0uBxmAaNjNM8Y4zXUjGyuwXIxyKsC_Cg45tL-5aKGSv73PNW_mOjgkc4ek0eRStL342yfkB3f7pEHy_hY_pT8HpJrf8JhGPgktRgJ2yNDvqVdoNiSA7xWOiQU0bD88hFHtAP8ATGn12bVU2MxTtg72rXUULxVuPK0mVO4KIZ_Un6c01uwl_4tZYLiYzQIto4KCjjqunX_jFycnX47OU9j34XUAnnbpHWtuGXKCeAesuIeW3MY45XPTFAeCJWpaq-kZ9IGA3wAOFAtQ46dwU3mXSWek922a_1LQm3gJQjn0uVWslrieYm5zFrJM2WlT4iallrbWJQce2Nc6Sn67Ie-2ySNm6THTUoImyVXY2GOLWQ-4G7O47G09vChW3_XUbe08M7kZShcKCoZgjCqUMIqxoILSpqQkGrSBT1lrwLewh81W0zg3Sx7T8u3lD6YVE9HpOk1MuISzE0VCXk9_wwYgQ8_pvXdDY7JBEdL4Al5MarsvAYC-KwAkN7_r6m9Ig85XkRkLGX5AdndrG_8IbC1TX00mOMf3CQ9ug priority: 102 providerName: Elsevier – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZgKyEuiDcLBRmJI4b4kTgRB0RRq4K0Faqo1Jvl-IEWtcmy2SL1F_C3mUmcLBxAe931WJHH881nex6EvFIlcATtahaKTDFllWSlqCwLPsBpIegys3jfsTgpjs_U5_P8PF24dSmscsTEHqh96_CO_C16_hKm1cX71Q-GXaPwdTW10LhJ9gCCy3xG9g4OT76cbsvucjUkw-XwDZxXKZZniPDqK0YuL8FuMcSrAvQoBGbS_uGg-jr-f_mpf_HQ3h8d3SV3EpGkHwbN3yM3QnOf3Fqkp_IH5FefWvsTjsLAJqnDONgO-fE1bSPFhhzgs1ifTkTj4vQTjmh68ANaTi_tqqPWYZRw8LRtqKV4p3AR6HJK4KIY_EnFm5xeg7V0rymXFBcLBBtPJQUU9e26e0jOjg6_fjxmqesCc0DdNqyutXBcewnMQ1UiYGMOa4MOmY06AJ2yVR20Cly5aIENAAOqVcyxL7jNgq_kIzJr2iY8IdRFUYJwrnzuFK8Vnpa4z5xTItNOhTnR41Ibl0qSY2eMCzPGnn03WyUZVJIZlDQnfJJcDWU5dpA5QG1O47Gwdv9Du_5mkp0aGbzNy1j4WFQqRml1oaXTnEcftbJxTqpxL5gxdxXQFiZa7vAB7ybZxG8G3rKj9P649UzCmc5srWJOXk5_A0Lgs49tQnuFYzIp0BLEnDwetuy0BhLYrASIfvr_yZ-R2wLvGTLOeL5PZpv1VXgOZGxTv0gW9xts8jP4 priority: 102 providerName: ProQuest |
Title | Multivariate consistency of resting-state fMRI connectivity maps acquired on a single individual over 2.5 years, 13 sites and 3 vendors |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811919308018 https://dx.doi.org/10.1016/j.neuroimage.2019.116210 https://www.ncbi.nlm.nih.gov/pubmed/31593793 https://www.proquest.com/docview/2324866776 https://www.proquest.com/docview/2303209142 https://doaj.org/article/3eda58f6df694ff3a7673c711fdf74af |
Volume | 205 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagSIgL4k2grIzEkZQ4duJEnFrUagvaFaqotDfLscfSVm1SNVukXrjyt5nJi3JA7IFLIiWeKLLn8Y09D8beqQIxgnZVDHmiYmWVjIu0tDF4QG8BdJFY2u9YLPP5qfq8yla3Wn1RTFhfHrifuA8SvM2KkPuQlyoEaXWupdNCBB-0soG0L9q80Zkay-0K1SfBUSfCTI8xPH1kV1cpcn2B8kqhXSVqjTylDNpbhqmr3_-Hffob_uzs0NEj9nAAkHy___HH7A7UT9j9xXBE_pT97FJqv6MLjCiSO4p_bQkX3_AmcGrEgbYq7tKIeFicHNOIulN6CMf5hb1suXUUHQyeNzW3nPYSzoGvp8QtTkGfPN3L-A1KSfueC8npCBoJa88lR-3pm6v2GTs9Ovz2aR4P3RZih5BtE1eVTp3QXiLiUGUK1JDDWtCQ2KABYZQtK9AKhHLBIgpA5FOpkFE_cJuAL-VztlM3Nbxk3IW0QOJM-cwpUSnykoRPnFNpop2CiOlxqo0bSpFTR4xzM8acnZnfi2RokUy_SBETE-VlX45jC5oDWs1pPBXU7h4gm5mBzcy_2Cxi5cgLZsxZRS2LH1pv8QMfJ9oB1_R4ZUvq3ZH1zKBfWkM4uEAh03nE3k6vUTPQcY-tobmmMYkk0VBpxF70LDvNgUQUK1E1v_ofc_OaPUhpFyIRsch22c7m6hreIFTbVDN2d--HwKte6Rm7t3_8Zb7E-8Hh8uvJrJPYX8-aQX4 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTQJeEHc6BhgJ3gjEjhMnQggx2NSytULTJu3NOL6gTltSmg7UX8C_4TdyTm6FB1Bf9tr4WGnO8Xc-2-dCyHORAkeQJg9cEopAaBEFKc904KyD3YKTaajxvGM8SYYn4tNpfLpBfnW5MBhW2WFiDdS2NHhG_ho9fwrTyuTd7FuAXaPwdrVrodGYxYFb_oAtW_V29BH0-4Lz_b3jD8Og7SoQGKAmiyDPJTdM2gg8q8i4w8YTWjvpQu2lA7qgs9xJ4ZgwXoO3Aw-fCx9j32sdOovFlwDyt4BmZLCKtnb3Jp-PVmV-mWiS72L4z4xlbexQE1FWV6icXgBOYEhZBmiVcMzc_cMh1n0D_vKL_-K9tf_bv0VutsSVvm8s7TbZcMUdcm3cXs3fJT_rVN7vsPUG9koNxt1WyMeXtPQUG4CAjwzq9CXqx0cjHFHUYAvbAHqhZxXVBqOSnaVlQTXFM4xzR6d9whjFYFPKX8V0CWqoXlIWUVQOCBaWRhRQ25bz6h45uRJ93CebRVm4h4Qaz1MQjoWNjWC5wN0Zs6ExgofSCDcgsvvUyrQl0LETx7nqYt3O1EpJCpWkGiUNCOslZ00ZkDVkdlGb_Xgs5F3_UM6_qhYXVOSsjlOfWJ9kwvtIy0RGRjLmrZdC-wHJOltQXa4soDtMNF3jBd70si2fanjSmtI7nempFtcqtVqFA_KsfwyIhNdMunDlJY4JI44rgQ_Ig8Zk-28QAXuOwCVs_3_yp-T68Hh8qA5Hk4NH5AbHM46QBSzeIZuL-aV7DERwkT9pVx8lX656wf8G8vtwpQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTZp4QdwpDDASvBEWO06cCCHE2KqV0WqamLQ34_gyFW1JaTpQfwH_iV_HObkVHkB92WvjY6U5x9_5bJ8LIS9EChxBmjxwSSgCoUUUpDzTgbMOdgtOpqHG847xJDk8FR_P4rMN8qvLhcGwyg4Ta6C2pcEz8l30_ClMK5Nd34ZFHO8P382-BdhBCm9au3YajYkcueUP2L5Vb0f7oOuXnA8PPn84DNoOA4EBmrII8lxyw6SNwMuKjDtsQqG1ky7UXjqgDjrLnRSOCeM1eD7w9rnwMfbA1qGzWIgJ4H9LgldMN8nW3sHk-GRV8peJJhEvhv_PWNbGETXRZXW1yuklYAaGl2WAXAnHLN4_nGPdQ-AvH_kvDlz7wuEtcrMlsfR9Y3W3yYYr7pDtcXtNf5f8rNN6v8M2HJgsNRiDWyE3X9LSU2wGAv4yqFOZqB-fjHBEUQMvbAnopZ5VVBuMUHaWlgXVFM8zLhyd9sljFANPKX8d0yWooXpFWURROSBYWBpRQHBbzqt75PRa9HGfbBZl4R4SajxPQTgWNjaC5QJ3asyGxggeSiPcgMjuUyvTlkPHrhwXqot7-6pWSlKoJNUoaUBYLzlrSoKsIbOH2uzHY1Hv-odyfq5ajFCRszpOfWJ9kgnvIy0TGRnJmLdeCu0HJOtsQXV5s4D0MNF0jRd408u23KrhTGtK73Smp1qMq9RqRQ7I8_4xoBNeOenClVc4Jow4rgQ-IA8ak-2_QQRMOgL38Oj_kz8j27DQ1afR5OgxucHxuCNkAYt3yOZifuWeACdc5E_bxUfJl-te778BCpB00Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multivariate+consistency+of+resting-state+fMRI+connectivity+maps+acquired+on+a+single+individual+over+2.5+years%2C+13+sites+and+3+vendors&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Badhwar%2C+AmanPreet&rft.au=Collin-Verreault%2C+Yannik&rft.au=Orban%2C+Pierre&rft.au=Urchs%2C+Sebastian&rft.date=2020-01-15&rft.eissn=1095-9572&rft.volume=205&rft.spage=116210&rft_id=info:doi/10.1016%2Fj.neuroimage.2019.116210&rft_id=info%3Apmid%2F31593793&rft.externalDocID=31593793 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |