Multivariate consistency of resting-state fMRI connectivity maps acquired on a single individual over 2.5 years, 13 sites and 3 vendors

Studies using resting-state functional magnetic resonance imaging (rsfMRI) are increasingly collecting data at multiple sites in order to speed up recruitment or increase sample size. The main objective of this study was to assess the long-term consistency of rsfMRI connectivity maps derived at mult...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 205; p. 116210
Main Authors Badhwar, AmanPreet, Collin-Verreault, Yannik, Orban, Pierre, Urchs, Sebastian, Chouinard, Isabelle, Vogel, Jacob, Potvin, Olivier, Duchesne, Simon, Bellec, Pierre
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.01.2020
Elsevier Limited
Elsevier
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2019.116210

Cover

Loading…
More Information
Summary:Studies using resting-state functional magnetic resonance imaging (rsfMRI) are increasingly collecting data at multiple sites in order to speed up recruitment or increase sample size. The main objective of this study was to assess the long-term consistency of rsfMRI connectivity maps derived at multiple sites and vendors using the Canadian Dementia Imaging Protocol (CDIP, www.cdip-pcid.ca). Nine to 10 min of functional BOLD images were acquired from an adult cognitively healthy volunteer scanned repeatedly at 13 Canadian sites on three scanner makes (General Electric, Philips and Siemens) over the course of 2.5 years. The consistency (spatial Pearson’s correlation) of rsfMRI connectivity maps for seven canonical networks ranged from 0.3 to 0.8, with a negligible effect of time, but significant site and vendor effects. We noted systematic differences in data quality (i.e. head motion, number of useable time frames, temporal signal-to-noise ratio) across vendors, which may also confound some of these results, and could not be disentangled in this sample. We also pooled the long-term longitudinal data with a single-site, short-term (1 month) data sample acquired on 26 subjects (10 scans per subject), called HNU1. Using randomly selected pairs of scans from each subject, we quantified the ability of a data-driven unsupervised cluster analysis to match two scans of the same subjects. In this “fingerprinting” experiment, we found that scans from the Canadian subject (Csub) could be matched with high accuracy intra-site (>95% for some networks), but that the accuracy decreased substantially for scans drawn from different sites and vendors, even falling outside of the range of accuracies observed in HNU1. Overall, our results demonstrate good multivariate stability of rsfMRI measures over several years, but substantial impact of scanning site and vendors. How detrimental these effects are will depend on the application, yet our results demonstrate that new methods for harmonizing multisite analysis represent an important area for future work. [Display omitted] •Consistency of rsfMRI connectivity over 2.5 years, 13 sites and 3 scanner vendors.•Time elapsed between scans had negligible effect on consistency.•Consistency decreased due to site and vendor differences.•Accuracy of connectivity fingerprints decreased due to site and vendor differences.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1053-8119
1095-9572
1095-9572
DOI:10.1016/j.neuroimage.2019.116210