Dynamic effective connectivity

Metastability is a key source of itinerant dynamics in the brain; namely, spontaneous spatiotemporal reorganization of neuronal activity. This itinerancy has been the focus of numerous dynamic functional connectivity (DFC) analyses – developed to characterize the formation and dissolution of distrib...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 207; p. 116453
Main Authors Zarghami, Tahereh S., Friston, Karl J.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.02.2020
Elsevier Limited
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Metastability is a key source of itinerant dynamics in the brain; namely, spontaneous spatiotemporal reorganization of neuronal activity. This itinerancy has been the focus of numerous dynamic functional connectivity (DFC) analyses – developed to characterize the formation and dissolution of distributed functional patterns over time, using resting state fMRI. However, aside from technical and practical controversies, these approaches cannot recover the neuronal mechanisms that underwrite itinerant (e.g., metastable) dynamics—due to their descriptive, model-free nature. We argue that effective connectivity (EC) analyses are more apt for investigating the neuronal basis of metastability. To this end, we appeal to biologically-grounded models (i.e., dynamic causal modelling, DCM) and dynamical systems theory (i.e., heteroclinic sequential dynamics) to create a probabilistic, generative model of haemodynamic fluctuations. This model generates trajectories in the parametric space of EC modes (i.e., states of connectivity) that characterize functional brain architectures. In brief, it extends an established spectral DCM, to generate functional connectivity data features that change over time. This foundational paper tries to establish the model’s face validity by simulating non-stationary fMRI time series and recovering key model parameters (i.e., transition probabilities among connectivity states and the parametric nature of these states) using variational Bayes. These data are further characterized using Bayesian model comparison (within and between subjects). Finally, we consider practical issues that attend applications and extensions of this scheme. Importantly, the scheme operates within a generic Bayesian framework – that can be adapted to study metastability and itinerant dynamics in any non-stationary time series.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1053-8119
1095-9572
1095-9572
DOI:10.1016/j.neuroimage.2019.116453