Estimating repetitive spatiotemporal patterns from many subjects’ resting-state fMRIs
Recently, we proposed a method to estimate repetitive spatiotemporal patterns from resting-state brain activity data (SpatioTemporal Pattern estimation, STeP) (Takeda et al., 2016). From such resting-state data as functional MRI (fMRI), STeP can estimate several spatiotemporal patterns and their ons...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 203; p. 116182 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.12.2019
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recently, we proposed a method to estimate repetitive spatiotemporal patterns from resting-state brain activity data (SpatioTemporal Pattern estimation, STeP) (Takeda et al., 2016). From such resting-state data as functional MRI (fMRI), STeP can estimate several spatiotemporal patterns and their onsets even if they are overlapping. Nowadays, a growing number of resting-state data are publicly available from such databases as the Autism Brain Imaging Data Exchange (ABIDE), which promote a better understanding of resting-state brain activities. In this study, we extend STeP to make it applicable to such big databases, thus proposing the method we call BigSTeP. From many subjects’ resting-state data, BigSTeP estimates spatiotemporal patterns that are common across subjects (common spatiotemporal patterns) as well as the corresponding spatiotemporal patterns in each subject (subject-specific spatiotemporal patterns). After verifying the performance of BigSTeP by simulation tests, we applied it to over 1,000 subjects’ resting-state fMRIs (rsfMRIs) obtained from ABIDE I. This revealed two common spatiotemporal patterns and the corresponding subject-specific spatiotemporal patterns. The common spatiotemporal patterns included spatial patterns resembling the default mode (DMN), sensorimotor, auditory, and visual networks, suggesting that these networks are time-locked with each other. We compared the subject-specific spatiotemporal patterns between autism spectrum disorder (ASD) and typically developed (TD) groups. As a result, significant differences were concentrated at a specific time in a pattern, when the DMN exhibited large positive activity. This suggests that the differences are context-dependent, that is, the differences in fMRI activities between ASDs and TDs do not always occur during the resting state but tend to occur when the DMN exhibits large positive activity. All of these results demonstrate the usefulness of BigSTeP in extracting inspiring hypotheses from big databases in a data-driven way.
•We propose a method to estimate spatiotemporal patterns from resting-state data.•It can be applied to big databases, such as ABIDE and HCP.•It provides robust knowledge on spatiotemporal brain dynamics in the resting state. |
---|---|
AbstractList | Recently, we proposed a method to estimate repetitive spatiotemporal patterns from resting-state brain activity data (SpatioTemporal Pattern estimation, STeP) (Takeda et al., 2016). From such resting-state data as functional MRI (fMRI), STeP can estimate several spatiotemporal patterns and their onsets even if they are overlapping. Nowadays, a growing number of resting-state data are publicly available from such databases as the Autism Brain Imaging Data Exchange (ABIDE), which promote a better understanding of resting-state brain activities. In this study, we extend STeP to make it applicable to such big databases, thus proposing the method we call BigSTeP. From many subjects’ resting-state data, BigSTeP estimates spatiotemporal patterns that are common across subjects (common spatiotemporal patterns) as well as the corresponding spatiotemporal patterns in each subject (subject-specific spatiotemporal patterns). After verifying the performance of BigSTeP by simulation tests, we applied it to over 1,000 subjects’ resting-state fMRIs (rsfMRIs) obtained from ABIDE I. This revealed two common spatiotemporal patterns and the corresponding subject-specific spatiotemporal patterns. The common spatiotemporal patterns included spatial patterns resembling the default mode (DMN), sensorimotor, auditory, and visual networks, suggesting that these networks are time-locked with each other. We compared the subject-specific spatiotemporal patterns between autism spectrum disorder (ASD) and typically developed (TD) groups. As a result, significant differences were concentrated at a specific time in a pattern, when the DMN exhibited large positive activity. This suggests that the differences are context-dependent, that is, the differences in fMRI activities between ASDs and TDs do not always occur during the resting state but tend to occur when the DMN exhibits large positive activity. All of these results demonstrate the usefulness of BigSTeP in extracting inspiring hypotheses from big databases in a data-driven way.
•We propose a method to estimate spatiotemporal patterns from resting-state data.•It can be applied to big databases, such as ABIDE and HCP.•It provides robust knowledge on spatiotemporal brain dynamics in the resting state. Recently, we proposed a method to estimate repetitive spatiotemporal patterns from resting-state brain activity data (SpatioTemporal Pattern estimation, STeP) (Takeda et al., 2016). From such resting-state data as functional MRI (fMRI), STeP can estimate several spatiotemporal patterns and their onsets even if they are overlapping. Nowadays, a growing number of resting-state data are publicly available from such databases as the Autism Brain Imaging Data Exchange (ABIDE), which promote a better understanding of resting-state brain activities. In this study, we extend STeP to make it applicable to such big databases, thus proposing the method we call BigSTeP. From many subjects’ resting-state data, BigSTeP estimates spatiotemporal patterns that are common across subjects (common spatiotemporal patterns) as well as the corresponding spatiotemporal patterns in each subject (subject-specific spatiotemporal patterns). After verifying the performance of BigSTeP by simulation tests, we applied it to over 1,000 subjects’ resting-state fMRIs (rsfMRIs) obtained from ABIDE I. This revealed two common spatiotemporal patterns and the corresponding subject-specific spatiotemporal patterns. The common spatiotemporal patterns included spatial patterns resembling the default mode (DMN), sensorimotor, auditory, and visual networks, suggesting that these networks are time-locked with each other. We compared the subject-specific spatiotemporal patterns between autism spectrum disorder (ASD) and typically developed (TD) groups. As a result, significant differences were concentrated at a specific time in a pattern, when the DMN exhibited large positive activity. This suggests that the differences are context-dependent, that is, the differences in fMRI activities between ASDs and TDs do not always occur during the resting state but tend to occur when the DMN exhibits large positive activity. All of these results demonstrate the usefulness of BigSTeP in extracting inspiring hypotheses from big databases in a data-driven way. Recently, we proposed a method to estimate repetitive spatiotemporal patterns from resting-state brain activity data (SpatioTemporal Pattern estimation, STeP) (Takeda et al., 2016). From such resting-state data as functional MRI (fMRI), STeP can estimate several spatiotemporal patterns and their onsets even if they are overlapping. Nowadays, a growing number of resting-state data are publicly available from such databases as the Autism Brain Imaging Data Exchange (ABIDE), which promote a better understanding of resting-state brain activities. In this study, we extend STeP to make it applicable to such big databases, thus proposing the method we call BigSTeP. From many subjects' resting-state data, BigSTeP estimates spatiotemporal patterns that are common across subjects (common spatiotemporal patterns) as well as the corresponding spatiotemporal patterns in each subject (subject-specific spatiotemporal patterns). After verifying the performance of BigSTeP by simulation tests, we applied it to over 1,000 subjects' resting-state fMRIs (rsfMRIs) obtained from ABIDE I. This revealed two common spatiotemporal patterns and the corresponding subject-specific spatiotemporal patterns. The common spatiotemporal patterns included spatial patterns resembling the default mode (DMN), sensorimotor, auditory, and visual networks, suggesting that these networks are time-locked with each other. We compared the subject-specific spatiotemporal patterns between autism spectrum disorder (ASD) and typically developed (TD) groups. As a result, significant differences were concentrated at a specific time in a pattern, when the DMN exhibited large positive activity. This suggests that the differences are context-dependent, that is, the differences in fMRI activities between ASDs and TDs do not always occur during the resting state but tend to occur when the DMN exhibits large positive activity. All of these results demonstrate the usefulness of BigSTeP in extracting inspiring hypotheses from big databases in a data-driven way. Recently, we proposed a method to estimate repetitive spatiotemporal patterns from resting-state brain activity data (SpatioTemporal Pattern estimation, STeP) (Takeda et al., 2016). From such resting-state data as functional MRI (fMRI), STeP can estimate several spatiotemporal patterns and their onsets even if they are overlapping. Nowadays, a growing number of resting-state data are publicly available from such databases as the Autism Brain Imaging Data Exchange (ABIDE), which promote a better understanding of resting-state brain activities. In this study, we extend STeP to make it applicable to such big databases, thus proposing the method we call BigSTeP. From many subjects' resting-state data, BigSTeP estimates spatiotemporal patterns that are common across subjects (common spatiotemporal patterns) as well as the corresponding spatiotemporal patterns in each subject (subject-specific spatiotemporal patterns). After verifying the performance of BigSTeP by simulation tests, we applied it to over 1,000 subjects' resting-state fMRIs (rsfMRIs) obtained from ABIDE I. This revealed two common spatiotemporal patterns and the corresponding subject-specific spatiotemporal patterns. The common spatiotemporal patterns included spatial patterns resembling the default mode (DMN), sensorimotor, auditory, and visual networks, suggesting that these networks are time-locked with each other. We compared the subject-specific spatiotemporal patterns between autism spectrum disorder (ASD) and typically developed (TD) groups. As a result, significant differences were concentrated at a specific time in a pattern, when the DMN exhibited large positive activity. This suggests that the differences are context-dependent, that is, the differences in fMRI activities between ASDs and TDs do not always occur during the resting state but tend to occur when the DMN exhibits large positive activity. All of these results demonstrate the usefulness of BigSTeP in extracting inspiring hypotheses from big databases in a data-driven way.Recently, we proposed a method to estimate repetitive spatiotemporal patterns from resting-state brain activity data (SpatioTemporal Pattern estimation, STeP) (Takeda et al., 2016). From such resting-state data as functional MRI (fMRI), STeP can estimate several spatiotemporal patterns and their onsets even if they are overlapping. Nowadays, a growing number of resting-state data are publicly available from such databases as the Autism Brain Imaging Data Exchange (ABIDE), which promote a better understanding of resting-state brain activities. In this study, we extend STeP to make it applicable to such big databases, thus proposing the method we call BigSTeP. From many subjects' resting-state data, BigSTeP estimates spatiotemporal patterns that are common across subjects (common spatiotemporal patterns) as well as the corresponding spatiotemporal patterns in each subject (subject-specific spatiotemporal patterns). After verifying the performance of BigSTeP by simulation tests, we applied it to over 1,000 subjects' resting-state fMRIs (rsfMRIs) obtained from ABIDE I. This revealed two common spatiotemporal patterns and the corresponding subject-specific spatiotemporal patterns. The common spatiotemporal patterns included spatial patterns resembling the default mode (DMN), sensorimotor, auditory, and visual networks, suggesting that these networks are time-locked with each other. We compared the subject-specific spatiotemporal patterns between autism spectrum disorder (ASD) and typically developed (TD) groups. As a result, significant differences were concentrated at a specific time in a pattern, when the DMN exhibited large positive activity. This suggests that the differences are context-dependent, that is, the differences in fMRI activities between ASDs and TDs do not always occur during the resting state but tend to occur when the DMN exhibits large positive activity. All of these results demonstrate the usefulness of BigSTeP in extracting inspiring hypotheses from big databases in a data-driven way. |
ArticleNumber | 116182 |
Author | Itahashi, Takashi Takeda, Yusuke Sato, Masa-aki Yamashita, Okito |
Author_xml | – sequence: 1 givenname: Yusuke surname: Takeda fullname: Takeda, Yusuke email: takeda@atr.jp organization: Computational Brain Dynamics Team, RIKEN Center for Advanced Intelligence Project, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0288, Japan – sequence: 2 givenname: Takashi surname: Itahashi fullname: Itahashi, Takashi organization: Medical Institute of Developmental Disabilities Research, Showa University, 6-11-11 Kita-karasuyama, Setagaya-ku, Tokyo, 157-8577, Japan – sequence: 3 givenname: Masa-aki surname: Sato fullname: Sato, Masa-aki organization: Department of Computational Brain Imaging, ATR Neural Information Analysis Laboratories, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0288, Japan – sequence: 4 givenname: Okito surname: Yamashita fullname: Yamashita, Okito organization: Computational Brain Dynamics Team, RIKEN Center for Advanced Intelligence Project, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0288, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31525496$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkd2K1TAUhYOMOD_6ClLwxpsek7TpaW5EHUYdGBFE8TKkO7tDapvUJB04d76Gr-eTmHpmEM7VucoPa317s9Y5OXHeISEFoxtGWfNq2DhcgreTvsUNp0xuGGtYyx-RM0alKKXY8pP1LqqyZUyekvMYB0qpZHX7hJxWTHBRy-aMfL-KKWOSdbdFwBmTTfYOizjnL59wmn3QY5FfCYOLRR_8VEza7Yq4dANCin9-_c7GuALKmHTCov_05To-JY97PUZ8dn9ekG_vr75efixvPn-4vnx7U4LYilRWBgEogumgqznlHQrTcEDEphZY1Whqg7LiQlPaQwVsK6nZIvRdJ2kHprogL_fcOfifS95DTTYCjqN26JeoOJectnUrWZa-OJAOfgkub6d4xRhnUvxTPb9XLd2ERs0hxxN26iGyLHi9F0DwMQbsFdi0puVS0HZUjKq1IzWo_x2ptSO17ygD2gPAw4wjrO_2VsyR3lkMKoJFB2hsyGUo4-0xkDcHEBits6DHH7g7DvEX0hbLSQ |
CitedBy_id | crossref_primary_10_3389_fpsyt_2023_1199113 crossref_primary_10_1016_j_neuroimage_2022_119013 crossref_primary_10_1016_j_neuroimage_2021_118711 |
Cites_doi | 10.1038/nature04587 10.1038/nn1825 10.1002/hbm.23288 10.1073/pnas.0911855107 10.1126/science.8036517 10.1038/nrn2201 10.1126/science.1093173 10.1073/pnas.1306031110 10.1073/pnas.0504136102 10.1111/j.2517-6161.1995.tb02031.x 10.1002/hbm.1048 10.1073/pnas.1216856110 10.1016/j.neuroimage.2010.08.030 10.1038/35084005 10.3389/fneur.2018.00556 10.1038/nn1675 10.1016/0010-0277(88)90011-X 10.1162/089976606775093882 10.3389/fpsyt.2016.00205 10.1016/j.neuroimage.2018.12.037 10.1038/ncomms11254 10.1093/cercor/bhs352 10.1073/pnas.0905267106 10.1186/s13229-015-0026-z 10.1016/j.neuroimage.2016.03.014 10.3389/fnins.2017.00115 10.1371/journal.pbio.3000042 10.1117/1.JBO.17.10.106004 10.1016/j.neuron.2008.08.026 10.1002/mrm.1910340409 10.1073/pnas.1530509100 10.1016/j.neuroimage.2017.10.048 10.3389/fnhum.2014.00074 10.1073/pnas.98.2.676 10.1093/brain/awr263 10.1093/brain/awt079 10.3389/fnhum.2015.00285 10.1038/nature09633 10.1098/rstb.2005.1634 10.1038/mp.2013.78 10.1016/j.neuroimage.2011.10.018 10.3389/fnhum.2013.00458 10.3389/fnhum.2016.00311 10.1038/376033a0 10.1038/s41598-019-40427-7 10.3389/fnsys.2013.00101 10.1016/j.neuroimage.2018.01.041 |
ContentType | Journal Article |
Copyright | 2019 The Authors Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved. 2019. The Authors |
Copyright_xml | – notice: 2019 The Authors – notice: Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved. – notice: 2019. The Authors |
DBID | 6I. AAFTH AAYXX CITATION NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 |
DOI | 10.1016/j.neuroimage.2019.116182 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed ProQuest Central (Corporate) Neurosciences Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database ProQuest Biological Science Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest One Psychology PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
ExternalDocumentID | 31525496 10_1016_j_neuroimage_2019_116182 S1053811919307736 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADFRT ADMUD ADNMO ADVLN ADXHL AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRLJ AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CAG CCPQU COF CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HDW HEI HMCUK HMK HMO HMQ HVGLF HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SES SEW SNS SSH SSN SSZ T5K TEORI UKHRP UV1 WUQ XPP YK3 Z5R ZMT ZU3 ~G- 3V. 6I. AACTN AADPK AAFTH AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG LCYCR NCXOZ RIG ZA5 AAYXX AGRNS ALIPV CITATION NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 |
ID | FETCH-LOGICAL-c575t-3decc0ecdbcb4202be5d62ceee645e34ed4de9325a00fc3c1790d7ecfbb90bcd3 |
IEDL.DBID | 7X7 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Fri Jul 11 11:19:00 EDT 2025 Wed Aug 13 09:45:12 EDT 2025 Thu Apr 03 07:03:24 EDT 2025 Tue Jul 01 03:02:10 EDT 2025 Thu Apr 24 22:57:26 EDT 2025 Fri Feb 23 02:47:36 EST 2024 Tue Aug 26 20:02:29 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | fMRI Big data Resting state Spatiotemporal pattern The autism brain imaging data exchange (ABIDE) |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c575t-3decc0ecdbcb4202be5d62ceee645e34ed4de9325a00fc3c1790d7ecfbb90bcd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1053811919307736 |
PMID | 31525496 |
PQID | 2311219591 |
PQPubID | 2031077 |
ParticipantIDs | proquest_miscellaneous_2292084891 proquest_journals_2311219591 pubmed_primary_31525496 crossref_citationtrail_10_1016_j_neuroimage_2019_116182 crossref_primary_10_1016_j_neuroimage_2019_116182 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2019_116182 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2019_116182 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2019 2019-12-00 20191201 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: December 2019 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2019 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Medaglia, Satterthwaite, Kelkar, Ciric, Moore, Ruparel, Gur, Gur, Bassett (bib30) 2018; 166 Biswal, Mennes, Zuo, Gohel, Kelly, Smith, Beckmann, Adelstein, Buckner, Colcombe, Dogonowski, Ernst, Fair, Hampson, Hoptman, Hyde, Kiviniemi, Kötter, Li, Lin, Lowe, Mackay, Madden, Madsen, Margulies, Mayberg, McMahon, Monk, Mostofsky, Nagel, Pekar, Peltier, Petersen, Riedl, Rombouts, Rypma, Schlaggar, Schmidt, Seidler, Siegle, Sorg, Teng, Veijola, Villringer, Walter, Wang, Weng, Whitfield-Gabrieli, Williamson, Windischberger, Zang, Zhang, Castellanos, Milham (bib6) 2010; 107 Itahashi, Yamada, Watanabe, Nakamura, Ohta, Kanai, Iwanami, Kato, Hashimoto (bib20) 2015; 6 Takeda, Hiroe, Yamashita, Sato (bib39) 2016; 133 Smith, Fox, Miller, Glahn, Fox, Mackay, Filippini, Watkins, Toro, Laird, Beckmann (bib37) 2009; 106 Ikegaya, Aaron, Cossart, Aronov, Lampl, Ferster, Yuste (bib19) 2004; 304 Majeed, Magnuson, Hasenkamp, Schwarb, Schumacher, Barsalou, Keilholz (bib29) 2011; 54 Yahata, Morimoto, Hashimoto, Lisi, Shibata, Kawakubo, Kuwabara, Kuroda, Yamada, Megumi, Imamizu, Náñez, Takahashi, Okamoto, Kasai, Kato, Sasaki, Watanabe, Kawato (bib46) 2016; 7 Shmuel, Augath, Oeltermann, Logothetis (bib36) 2006; 9 Erdoǧan, Tong, Hocke, Lindsey, deB Frederick (bib12) 2016; 10 Yamashita, Yahata, Itahashi, Lisi, Yamada, Ichikawa, Takamura, Yoshihara, Kunimatsu, Okada, Yamagata, Matsuo, Hashimoto, Okada, Sakai, Morimoto, Narumoto, Shimada, Kasai, Kato, Takahashi, Okamoto, Tanaka, Kawato, Yamashita, Imamizu (bib47) 2019; 17 Uddin, Supekar, Menon (bib42) 2013; 7 Anderson, Nielsen, Froehlich, DuBray, Druzgal, Cariello, Cooperrider, Zielinski, Ravichandran, Fletcher, Alexander, Bigler, Lange, Lainhart (bib2) 2011; 134 Benjamini, Hochberg (bib5) 1995; 57 Han, Caporale, Dan (bib16) 2008; 60 Raichle, MacLeod, Snyder, Powers, Gusnard, Shulman (bib35) 2001; 98 Tong, Hocke, Fan, Janes, Frederick (bib40) 2015; 9 Fox, Raichle (bib14) 2007; 8 Nair, Treiber, Shukla, Shih, Müller (bib31) 2013; 136 Allen, Damaraju, Plis, Erhardt, Eichele, Calhoun (bib1) 2014; 24 Li, Mai, Liu (bib24) 2014; 8 Foster, Wilson (bib13) 2006; 440 Tong, Hocke, Licata, Frederick (bib41) 2012; 17 Calhoun, Adali, Pearlson, Pekar (bib8) 2001; 14 Biswal, Yetkin, Haughton, Hyde (bib7) 1995; 34 Fox, Snyder, Vincent, Corbetta, Van Essen, Raichle (bib15) 2005; 102 Baron-Cohen (bib3) 1988; 29 Lau, Leung, Lau (bib23) 2019; 9 Liu, Zhang, Chang, Duyn (bib27) 2018; 180 Dragoi, Tonegawa (bib11) 2013; 110 Di Martino, Yan, Li, Denio, Castellanos, Alaerts, Anderson, Assaf, Bookheimer, Dapretto, Deen, Delmonte, Dinstein, Ertl-Wagner, Fair, Gallagher, Kennedy, Keown, Keysers, Lainhart, Lord, Luna, Menon, Minshew, Monk, Mueller, Müller, Nebel, Nigg, O’Hearn, Pelphrey, Peltier, Rudie, Sunaert, Thioux, Tyszka, Uddin, Verhoeven, Wenderoth, Wiggins, Mostofsky, Milham (bib9) 2014; 19 Patriquin, DeRamus, Libero, Laird, Kana (bib33) 2016; 37 Liu, Duyn (bib26) 2013; 110 Liu, Chang, Duyn (bib25) 2013; 7 Wang, Liu, Shi, Liu, Ma, Ma, Tian, Gong, Wang (bib43) 2018; 9 Hopfield (bib17) 1995; 376 Storey, Tibshirani (bib38) 2003; 100 Hull, Dokovna, Jacokes, Torgerson, Irimia, Van Horn (bib18) 2017; 7 Wilson, McNaughton (bib44) 1994; 265 Dragoi, Tonegawa (bib10) 2011; 469 Beckmann, DeLuca, Devlin, Smith (bib4) 2005; 360 Ji, Wilson (bib22) 2007; 10 Izhikevich (bib21) 2006; 18 Logothetis, Pauls, Augath, Trinath, Oeltermann (bib28) 2001; 412 Xie, Zheng, Handwerker, Bandettini, Calhoun, Mitra, Gonzalez-Castillo (bib45) 2019; 188 Nickerson, Smith, Öngür, Beckmann (bib32) 2017; 11 Power, Barnes, Snyder, Schlaggar, Petersen (bib34) 2012; 59 Izhikevich (10.1016/j.neuroimage.2019.116182_bib21) 2006; 18 Logothetis (10.1016/j.neuroimage.2019.116182_bib28) 2001; 412 Hopfield (10.1016/j.neuroimage.2019.116182_bib17) 1995; 376 Storey (10.1016/j.neuroimage.2019.116182_bib38) 2003; 100 Allen (10.1016/j.neuroimage.2019.116182_bib1) 2014; 24 Liu (10.1016/j.neuroimage.2019.116182_bib26) 2013; 110 Shmuel (10.1016/j.neuroimage.2019.116182_bib36) 2006; 9 Liu (10.1016/j.neuroimage.2019.116182_bib25) 2013; 7 Beckmann (10.1016/j.neuroimage.2019.116182_bib4) 2005; 360 Ji (10.1016/j.neuroimage.2019.116182_bib22) 2007; 10 Wang (10.1016/j.neuroimage.2019.116182_bib43) 2018; 9 Wilson (10.1016/j.neuroimage.2019.116182_bib44) 1994; 265 Medaglia (10.1016/j.neuroimage.2019.116182_bib30) 2018; 166 Hull (10.1016/j.neuroimage.2019.116182_bib18) 2017; 7 Fox (10.1016/j.neuroimage.2019.116182_bib15) 2005; 102 Baron-Cohen (10.1016/j.neuroimage.2019.116182_bib3) 1988; 29 Majeed (10.1016/j.neuroimage.2019.116182_bib29) 2011; 54 Power (10.1016/j.neuroimage.2019.116182_bib34) 2012; 59 Xie (10.1016/j.neuroimage.2019.116182_bib45) 2019; 188 Dragoi (10.1016/j.neuroimage.2019.116182_bib11) 2013; 110 Yahata (10.1016/j.neuroimage.2019.116182_bib46) 2016; 7 Takeda (10.1016/j.neuroimage.2019.116182_bib39) 2016; 133 Lau (10.1016/j.neuroimage.2019.116182_bib23) 2019; 9 Biswal (10.1016/j.neuroimage.2019.116182_bib7) 1995; 34 Han (10.1016/j.neuroimage.2019.116182_bib16) 2008; 60 Uddin (10.1016/j.neuroimage.2019.116182_bib42) 2013; 7 Liu (10.1016/j.neuroimage.2019.116182_bib27) 2018; 180 Biswal (10.1016/j.neuroimage.2019.116182_bib6) 2010; 107 Calhoun (10.1016/j.neuroimage.2019.116182_bib8) 2001; 14 Itahashi (10.1016/j.neuroimage.2019.116182_bib20) 2015; 6 Nair (10.1016/j.neuroimage.2019.116182_bib31) 2013; 136 Nickerson (10.1016/j.neuroimage.2019.116182_bib32) 2017; 11 Raichle (10.1016/j.neuroimage.2019.116182_bib35) 2001; 98 Tong (10.1016/j.neuroimage.2019.116182_bib40) 2015; 9 Foster (10.1016/j.neuroimage.2019.116182_bib13) 2006; 440 Fox (10.1016/j.neuroimage.2019.116182_bib14) 2007; 8 Dragoi (10.1016/j.neuroimage.2019.116182_bib10) 2011; 469 Li (10.1016/j.neuroimage.2019.116182_bib24) 2014; 8 Benjamini (10.1016/j.neuroimage.2019.116182_bib5) 1995; 57 Tong (10.1016/j.neuroimage.2019.116182_bib41) 2012; 17 Erdoǧan (10.1016/j.neuroimage.2019.116182_bib12) 2016; 10 Patriquin (10.1016/j.neuroimage.2019.116182_bib33) 2016; 37 Anderson (10.1016/j.neuroimage.2019.116182_bib2) 2011; 134 Smith (10.1016/j.neuroimage.2019.116182_bib37) 2009; 106 Di Martino (10.1016/j.neuroimage.2019.116182_bib9) 2014; 19 Ikegaya (10.1016/j.neuroimage.2019.116182_bib19) 2004; 304 Yamashita (10.1016/j.neuroimage.2019.116182_bib47) 2019; 17 |
References_xml | – volume: 29 start-page: 83 year: 1988 end-page: 84 ident: bib3 article-title: Without a theory of mind one cannot participate in a conversation publication-title: Cognition – volume: 110 start-page: 4392 year: 2013 end-page: 4397 ident: bib26 article-title: Time-varying functional network information extracted from brief instances of spontaneous brain activity publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 7 start-page: 11254 year: 2016 ident: bib46 article-title: A small number of abnormal brain connections predicts adult autism spectrum disorder publication-title: Nat. Commun. – volume: 11 start-page: 115 year: 2017 ident: bib32 article-title: Using dual regression to investigate network shape and amplitude in functional connectivity analyses publication-title: Front. Neurosci. – volume: 57 start-page: 289 year: 1995 end-page: 300 ident: bib5 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: J. R. Stat. Ser. Soc. B Stat. Methodol. – volume: 7 start-page: 458 year: 2013 ident: bib42 article-title: Reconceptualizing functional brain connectivity in autism from a developmental perspective publication-title: Front. Hum. Neurosci. – volume: 98 start-page: 676 year: 2001 end-page: 682 ident: bib35 article-title: A default mode of brain function publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 9 start-page: 556 year: 2018 ident: bib43 article-title: Altered resting-state functional activity in patients with autism spectrum disorder: a quantitative meta-analysis publication-title: Front. Neurol. – volume: 107 start-page: 4734 year: 2010 end-page: 4739 ident: bib6 article-title: Toward discovery science of human brain function publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 10 start-page: 100 year: 2007 end-page: 107 ident: bib22 article-title: Coordinated memory replay in the visual cortex and hippocampus during sleep publication-title: Nat. Neurosci. – volume: 10 start-page: 311 year: 2016 ident: bib12 article-title: Correcting for blood arrival time in global mean regression enhances functional connectivity analysis of resting state fMRI-BOLD signals publication-title: Front. Hum. Neurosci. – volume: 265 start-page: 676 year: 1994 end-page: 679 ident: bib44 article-title: Reactivation of hippocampal ensemble memories during sleep publication-title: Science – volume: 102 start-page: 9673 year: 2005 end-page: 9678 ident: bib15 article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 136 start-page: 1942 year: 2013 end-page: 1955 ident: bib31 article-title: Impaired thalamocortical connectivity in autism spectrum disorder: a study of functional and anatomical connectivity publication-title: Brain – volume: 8 start-page: 700 year: 2007 end-page: 711 ident: bib14 article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging publication-title: Nat. Rev. Neurosci. – volume: 100 start-page: 9440 year: 2003 end-page: 9445 ident: bib38 article-title: Statistical significance for genomewide studies publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 188 start-page: 502 year: 2019 end-page: 514 ident: bib45 article-title: Efficacy of different dynamic functional connectivity methods to capture cognitively relevant information publication-title: Neuroimage – volume: 34 start-page: 537 year: 1995 end-page: 541 ident: bib7 article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI publication-title: Magn. Reson. Med. – volume: 7 start-page: 205 year: 2017 ident: bib18 article-title: Resting-state functional connectivity in autism spectrum disorders: a review publication-title: Front. Psychiatry – volume: 134 start-page: 3742 year: 2011 end-page: 3754 ident: bib2 article-title: Functional connectivity magnetic resonance imaging classification of autism publication-title: Brain – volume: 304 start-page: 559 year: 2004 end-page: 564 ident: bib19 article-title: Synfire chains and cortical songs: temporal modules of cortical activity publication-title: Science – volume: 110 start-page: 9100 year: 2013 end-page: 9105 ident: bib11 article-title: Distinct preplay of multiple novel spatial experiences in the rat publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 37 start-page: 3957 year: 2016 end-page: 3978 ident: bib33 article-title: Neuroanatomical and neurofunctional markers of social cognition in autism spectrum disorder publication-title: Hum. Brain Mapp. – volume: 59 start-page: 2142 year: 2012 end-page: 2154 ident: bib34 article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion publication-title: Neuroimage – volume: 17 start-page: 106004 year: 2012 ident: bib41 article-title: Low-frequency oscillations measured in the periphery with near-infrared spectroscopy are strongly correlated with blood oxygen level-dependent functional magnetic resonance imaging signals publication-title: J. Biomed. Opt. – volume: 24 start-page: 663 year: 2014 end-page: 676 ident: bib1 article-title: Tracking whole-brain connectivity dynamics in the resting state publication-title: Cerebr. Cortex – volume: 106 start-page: 13040 year: 2009 end-page: 13045 ident: bib37 article-title: Correspondence of the brain’s functional architecture during activation and rest publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 9 start-page: 3892 year: 2019 ident: bib23 article-title: Resting-state abnormalities in autism spectrum disorders: a meta-analysis publication-title: Sci. Rep. – volume: 180 start-page: 485 year: 2018 end-page: 494 ident: bib27 article-title: Co-activation patterns in resting-state fMRI signals publication-title: Neuroimage – volume: 60 start-page: 321 year: 2008 end-page: 327 ident: bib16 article-title: Reverberation of recent visual experience in spontaneous cortical waves publication-title: Neuron – volume: 6 start-page: 30 year: 2015 ident: bib20 article-title: Alterations of local spontaneous brain activity and connectivity in adults with high-functioning autism spectrum disorder publication-title: Mol. Autism. – volume: 7 start-page: 101 year: 2013 ident: bib25 article-title: Decomposition of spontaneous brain activity into distinct fMRI co-activation patterns publication-title: Front. Syst. Neurosci. – volume: 19 start-page: 659 year: 2014 end-page: 667 ident: bib9 article-title: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism publication-title: Mol. Psychiatry – volume: 18 start-page: 245 year: 2006 end-page: 282 ident: bib21 article-title: Polychronization: computation with spikes publication-title: Neural Comput. – volume: 17 year: 2019 ident: bib47 article-title: Harmonization of resting-state functional MRI data across multiple imaging sites via the separation of site differences into sampling bias and measurement bias publication-title: PLoS Biol. – volume: 54 start-page: 1140 year: 2011 end-page: 1150 ident: bib29 article-title: Spatiotemporal dynamics of low frequency BOLD fluctuations in rats and humans publication-title: Neuroimage – volume: 440 start-page: 680 year: 2006 end-page: 683 ident: bib13 article-title: Reverse replay of behavioural sequences in hippocampal place cells during the awake state publication-title: Nature – volume: 8 start-page: 74 year: 2014 ident: bib24 article-title: The default mode network and social understanding of others: what do brain connectivity studies tell us publication-title: Front. Hum. Neurosci. – volume: 360 start-page: 1001 year: 2005 end-page: 1013 ident: bib4 article-title: Investigations into resting-state connectivity using independent component analysis publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. – volume: 9 start-page: 285 year: 2015 ident: bib40 article-title: Can apparent resting state connectivity arise from systemic fluctuations? publication-title: Front. Hum. Neurosci. – volume: 14 start-page: 140 year: 2001 end-page: 151 ident: bib8 article-title: A method for making group inferences from functional MRI data using independent component analysis publication-title: Hum. Brain Mapp. – volume: 166 start-page: 293 year: 2018 end-page: 306 ident: bib30 article-title: Brain state expression and transitions are related to complex executive cognition in normative neurodevelopment publication-title: Neuroimage – volume: 376 start-page: 33 year: 1995 end-page: 36 ident: bib17 article-title: Pattern recognition computation using action potential timing for stimulus representation publication-title: Nature – volume: 412 start-page: 150 year: 2001 end-page: 157 ident: bib28 article-title: Neurophysiological investigation of the basis of the fMRI signal publication-title: Nature – volume: 9 start-page: 569 year: 2006 end-page: 577 ident: bib36 article-title: Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1 publication-title: Nat. Neurosci. – volume: 133 start-page: 251 year: 2016 end-page: 265 ident: bib39 article-title: Estimating repetitive spatiotemporal patterns from resting-state brain activity data publication-title: Neuroimage – volume: 469 start-page: 397 year: 2011 end-page: 401 ident: bib10 article-title: Preplay of future place cell sequences by hippocampal cellular assemblies publication-title: Nature – volume: 440 start-page: 680 year: 2006 ident: 10.1016/j.neuroimage.2019.116182_bib13 article-title: Reverse replay of behavioural sequences in hippocampal place cells during the awake state publication-title: Nature doi: 10.1038/nature04587 – volume: 10 start-page: 100 year: 2007 ident: 10.1016/j.neuroimage.2019.116182_bib22 article-title: Coordinated memory replay in the visual cortex and hippocampus during sleep publication-title: Nat. Neurosci. doi: 10.1038/nn1825 – volume: 37 start-page: 3957 year: 2016 ident: 10.1016/j.neuroimage.2019.116182_bib33 article-title: Neuroanatomical and neurofunctional markers of social cognition in autism spectrum disorder publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23288 – volume: 107 start-page: 4734 year: 2010 ident: 10.1016/j.neuroimage.2019.116182_bib6 article-title: Toward discovery science of human brain function publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0911855107 – volume: 265 start-page: 676 year: 1994 ident: 10.1016/j.neuroimage.2019.116182_bib44 article-title: Reactivation of hippocampal ensemble memories during sleep publication-title: Science doi: 10.1126/science.8036517 – volume: 8 start-page: 700 year: 2007 ident: 10.1016/j.neuroimage.2019.116182_bib14 article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2201 – volume: 304 start-page: 559 year: 2004 ident: 10.1016/j.neuroimage.2019.116182_bib19 article-title: Synfire chains and cortical songs: temporal modules of cortical activity publication-title: Science doi: 10.1126/science.1093173 – volume: 110 start-page: 9100 year: 2013 ident: 10.1016/j.neuroimage.2019.116182_bib11 article-title: Distinct preplay of multiple novel spatial experiences in the rat publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1306031110 – volume: 102 start-page: 9673 year: 2005 ident: 10.1016/j.neuroimage.2019.116182_bib15 article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0504136102 – volume: 57 start-page: 289 year: 1995 ident: 10.1016/j.neuroimage.2019.116182_bib5 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: J. R. Stat. Ser. Soc. B Stat. Methodol. doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 14 start-page: 140 year: 2001 ident: 10.1016/j.neuroimage.2019.116182_bib8 article-title: A method for making group inferences from functional MRI data using independent component analysis publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.1048 – volume: 110 start-page: 4392 year: 2013 ident: 10.1016/j.neuroimage.2019.116182_bib26 article-title: Time-varying functional network information extracted from brief instances of spontaneous brain activity publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1216856110 – volume: 54 start-page: 1140 year: 2011 ident: 10.1016/j.neuroimage.2019.116182_bib29 article-title: Spatiotemporal dynamics of low frequency BOLD fluctuations in rats and humans publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.08.030 – volume: 412 start-page: 150 year: 2001 ident: 10.1016/j.neuroimage.2019.116182_bib28 article-title: Neurophysiological investigation of the basis of the fMRI signal publication-title: Nature doi: 10.1038/35084005 – volume: 9 start-page: 556 year: 2018 ident: 10.1016/j.neuroimage.2019.116182_bib43 article-title: Altered resting-state functional activity in patients with autism spectrum disorder: a quantitative meta-analysis publication-title: Front. Neurol. doi: 10.3389/fneur.2018.00556 – volume: 9 start-page: 569 year: 2006 ident: 10.1016/j.neuroimage.2019.116182_bib36 article-title: Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1 publication-title: Nat. Neurosci. doi: 10.1038/nn1675 – volume: 29 start-page: 83 year: 1988 ident: 10.1016/j.neuroimage.2019.116182_bib3 article-title: Without a theory of mind one cannot participate in a conversation publication-title: Cognition doi: 10.1016/0010-0277(88)90011-X – volume: 18 start-page: 245 year: 2006 ident: 10.1016/j.neuroimage.2019.116182_bib21 article-title: Polychronization: computation with spikes publication-title: Neural Comput. doi: 10.1162/089976606775093882 – volume: 7 start-page: 205 year: 2017 ident: 10.1016/j.neuroimage.2019.116182_bib18 article-title: Resting-state functional connectivity in autism spectrum disorders: a review publication-title: Front. Psychiatry doi: 10.3389/fpsyt.2016.00205 – volume: 188 start-page: 502 year: 2019 ident: 10.1016/j.neuroimage.2019.116182_bib45 article-title: Efficacy of different dynamic functional connectivity methods to capture cognitively relevant information publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.12.037 – volume: 7 start-page: 11254 year: 2016 ident: 10.1016/j.neuroimage.2019.116182_bib46 article-title: A small number of abnormal brain connections predicts adult autism spectrum disorder publication-title: Nat. Commun. doi: 10.1038/ncomms11254 – volume: 24 start-page: 663 year: 2014 ident: 10.1016/j.neuroimage.2019.116182_bib1 article-title: Tracking whole-brain connectivity dynamics in the resting state publication-title: Cerebr. Cortex doi: 10.1093/cercor/bhs352 – volume: 106 start-page: 13040 year: 2009 ident: 10.1016/j.neuroimage.2019.116182_bib37 article-title: Correspondence of the brain’s functional architecture during activation and rest publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0905267106 – volume: 6 start-page: 30 year: 2015 ident: 10.1016/j.neuroimage.2019.116182_bib20 article-title: Alterations of local spontaneous brain activity and connectivity in adults with high-functioning autism spectrum disorder publication-title: Mol. Autism. doi: 10.1186/s13229-015-0026-z – volume: 133 start-page: 251 year: 2016 ident: 10.1016/j.neuroimage.2019.116182_bib39 article-title: Estimating repetitive spatiotemporal patterns from resting-state brain activity data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.03.014 – volume: 11 start-page: 115 year: 2017 ident: 10.1016/j.neuroimage.2019.116182_bib32 article-title: Using dual regression to investigate network shape and amplitude in functional connectivity analyses publication-title: Front. Neurosci. doi: 10.3389/fnins.2017.00115 – volume: 17 year: 2019 ident: 10.1016/j.neuroimage.2019.116182_bib47 article-title: Harmonization of resting-state functional MRI data across multiple imaging sites via the separation of site differences into sampling bias and measurement bias publication-title: PLoS Biol. doi: 10.1371/journal.pbio.3000042 – volume: 17 start-page: 106004 year: 2012 ident: 10.1016/j.neuroimage.2019.116182_bib41 article-title: Low-frequency oscillations measured in the periphery with near-infrared spectroscopy are strongly correlated with blood oxygen level-dependent functional magnetic resonance imaging signals publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.17.10.106004 – volume: 60 start-page: 321 year: 2008 ident: 10.1016/j.neuroimage.2019.116182_bib16 article-title: Reverberation of recent visual experience in spontaneous cortical waves publication-title: Neuron doi: 10.1016/j.neuron.2008.08.026 – volume: 34 start-page: 537 year: 1995 ident: 10.1016/j.neuroimage.2019.116182_bib7 article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910340409 – volume: 100 start-page: 9440 year: 2003 ident: 10.1016/j.neuroimage.2019.116182_bib38 article-title: Statistical significance for genomewide studies publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1530509100 – volume: 166 start-page: 293 year: 2018 ident: 10.1016/j.neuroimage.2019.116182_bib30 article-title: Brain state expression and transitions are related to complex executive cognition in normative neurodevelopment publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.10.048 – volume: 8 start-page: 74 year: 2014 ident: 10.1016/j.neuroimage.2019.116182_bib24 article-title: The default mode network and social understanding of others: what do brain connectivity studies tell us publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2014.00074 – volume: 98 start-page: 676 year: 2001 ident: 10.1016/j.neuroimage.2019.116182_bib35 article-title: A default mode of brain function publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.98.2.676 – volume: 134 start-page: 3742 year: 2011 ident: 10.1016/j.neuroimage.2019.116182_bib2 article-title: Functional connectivity magnetic resonance imaging classification of autism publication-title: Brain doi: 10.1093/brain/awr263 – volume: 136 start-page: 1942 year: 2013 ident: 10.1016/j.neuroimage.2019.116182_bib31 article-title: Impaired thalamocortical connectivity in autism spectrum disorder: a study of functional and anatomical connectivity publication-title: Brain doi: 10.1093/brain/awt079 – volume: 9 start-page: 285 year: 2015 ident: 10.1016/j.neuroimage.2019.116182_bib40 article-title: Can apparent resting state connectivity arise from systemic fluctuations? publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2015.00285 – volume: 469 start-page: 397 year: 2011 ident: 10.1016/j.neuroimage.2019.116182_bib10 article-title: Preplay of future place cell sequences by hippocampal cellular assemblies publication-title: Nature doi: 10.1038/nature09633 – volume: 360 start-page: 1001 year: 2005 ident: 10.1016/j.neuroimage.2019.116182_bib4 article-title: Investigations into resting-state connectivity using independent component analysis publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. doi: 10.1098/rstb.2005.1634 – volume: 19 start-page: 659 year: 2014 ident: 10.1016/j.neuroimage.2019.116182_bib9 article-title: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism publication-title: Mol. Psychiatry doi: 10.1038/mp.2013.78 – volume: 59 start-page: 2142 year: 2012 ident: 10.1016/j.neuroimage.2019.116182_bib34 article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.10.018 – volume: 7 start-page: 458 year: 2013 ident: 10.1016/j.neuroimage.2019.116182_bib42 article-title: Reconceptualizing functional brain connectivity in autism from a developmental perspective publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2013.00458 – volume: 10 start-page: 311 year: 2016 ident: 10.1016/j.neuroimage.2019.116182_bib12 article-title: Correcting for blood arrival time in global mean regression enhances functional connectivity analysis of resting state fMRI-BOLD signals publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2016.00311 – volume: 376 start-page: 33 year: 1995 ident: 10.1016/j.neuroimage.2019.116182_bib17 article-title: Pattern recognition computation using action potential timing for stimulus representation publication-title: Nature doi: 10.1038/376033a0 – volume: 9 start-page: 3892 year: 2019 ident: 10.1016/j.neuroimage.2019.116182_bib23 article-title: Resting-state abnormalities in autism spectrum disorders: a meta-analysis publication-title: Sci. Rep. doi: 10.1038/s41598-019-40427-7 – volume: 7 start-page: 101 year: 2013 ident: 10.1016/j.neuroimage.2019.116182_bib25 article-title: Decomposition of spontaneous brain activity into distinct fMRI co-activation patterns publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2013.00101 – volume: 180 start-page: 485 year: 2018 ident: 10.1016/j.neuroimage.2019.116182_bib27 article-title: Co-activation patterns in resting-state fMRI signals publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.01.041 |
SSID | ssj0009148 |
Score | 2.329514 |
Snippet | Recently, we proposed a method to estimate repetitive spatiotemporal patterns from resting-state brain activity data (SpatioTemporal Pattern estimation, STeP)... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 116182 |
SubjectTerms | Autism Big data Brain mapping Brain research Data exchange Electroencephalography fMRI Functional magnetic resonance imaging Medical imaging Memory Neuroimaging R&D Research & development Resting state Retina Sensorimotor system Sensory integration Spatiotemporal pattern The autism brain imaging data exchange (ABIDE) |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-RAEG7Eg3hZfO_sqrTgtZ10uvPCk4iiwnjwgd6a6e7KMovGwcxcxb_h3_OXWJV0RjwIAx6TdIWkUo8vSdVXjO3HHrNSorXQpVJCSwBRWFmKDPB9y4K3saTm5MFlenarL-6T-wV23PXCUFlliP1tTG-iddjTD9rsj0ej_jUiA0w3-L5RoJ1mimi3tc7Iyg9ePss8CqnbdrhECVodqnnaGq-GM3L0iJ5LRV4Fxo9U5vF3Keo7CNqkotMV9itgSH7UXuYqW4BqjS0Nwl_ydXZ3gn5LSLT6x59hTH1kGNN43RRPBy6qBz5umDWrmlOHCX_EoMDrqaXPMvX76xunmR14AtF0HPFycHVeb7Db05Ob4zMRBigIhyhsIpTHBxSB89ZZHUexhcSnMaZFSHUCSoPXHhDAJcMoKp1yxNblM3CltUVknVebbLF6quA340OCNj7XiYJCO2Jxk9T1imAmj4cucT2WdTozLrCL05CLB9OVkf03n9o2pG3TarvH5Exy3DJszCFTdI_FdB2kGPMMpoE5ZA9nsl8sbU7p7c4KTPD22iBGljGx9Mge25sdRj-lny_DCp6muIbGguU6pzVbrfXMblfRECpdpH9-dGl_2TJttbU222xx8jyFHURME7vbuMQH0xsXnA priority: 102 providerName: Elsevier |
Title | Estimating repetitive spatiotemporal patterns from many subjects’ resting-state fMRIs |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811919307736 https://dx.doi.org/10.1016/j.neuroimage.2019.116182 https://www.ncbi.nlm.nih.gov/pubmed/31525496 https://www.proquest.com/docview/2311219591 https://www.proquest.com/docview/2292084891 |
Volume | 203 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbhMxELZoKyEuiPKb0kZG4mpYr71_4oBKlSoFElURFblZsT1bgdpN2k2uqK_R1-NJmNn1JqeinHxYj7Vrj2e-tWe-Yex97NErJVoLXSoltAQQhZWlyAD_tyx4G0tKTh6N0-GF_jpNpuHArQ5hlZ1NbAy1nzs6I_-IOETGxIQiPy9uBFWNotvVUEJjh-0RdRlpdTbNNqS7UrepcIkSOXYIkTxtfFfDF_nrGnctBXgVaDtSmccPuaeH4Gfjhk6fsacBP_LjdsH32SOonrPHo3BD_oL9HOCeJRRaXfJbWFAOGdozXjeB04GH6oovGlbNquaUXcKv0SDwemXpSKb-e3fPqV4HDiCabCNejiZn9Ut2cTr4cTIUoXiCcIjAlkJ5XJwInLfO6jiKLSQ-jdElQqoTUBq89oDgLZlFUemUI6Yun4ErrS0i67x6xXareQVvGJ8RrPG5ThQU2hGDm6SMVwQyeTxzieuxrJsz4wKzOBW4uDJdCNlvs5ltQ7Nt2tnuMbmWXLTsGlvIFN2ymC57FO2dQRewheyntWxAGC1y2FL6sNMCE3Z6bTZ62WPv1o9xj9LFy6yC-Qr7UEmwXOfU53WrPevPVVSAShfpwf8Hf8ue0Ju0gTSHbHd5u4IjhENL22c7H_7IfqP5fbZ3fDL5fk7t2bfhGNsvg_H55B947hIE |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIgEXxLMEChgJjhbrtfclhBCCVgltekCtyM3E9iwCtZvQTYS48Tf4E_wofgkz-0hORbn0vDuWdzz-5vN6HgDP40BeKTFGmlJraRSiLJwqZYZ03nIYXKw4OXl8lA5PzIdJMtmCP30uDIdV9pjYAHWYef5H_pJ4iIq5Eop6M_8uuWsU3672LTRaszjAnz_oyFa_Hr2n9X0Rx_t7x--GsusqID1Rk4XUgWYdoQ_OO0NHf4dJSGPyFZiaBLXBYAISq0mmUVR67bmEVcjQl84VkfNB07hX4Cp9YsSHvWySrYv8KtOm3iVa5koVXeRQG0_W1Kf8ekYowQFlBWFVqvL4Ind4Ed1t3N7-LbjZ8VXxtjWw27CF1R24Nu5u5O_Cpz3CCGa91RdxjnPOWSP8FHUTqN3VvToV86aKZ1ULzmYRZwRAol46_gVU__31W3B_EBpANtlNohx_HNX34ORS1HoftqtZhQ9ATJlGhdwkGgvjuWKc4gxbIk55PPWJH0DW68z6rpI5N9Q4tX3I2je71rZlbdtW2wNQK8l5W81jA5miXxbbZ6sSvlpyORvIvlrJdoymZSobSu_2VmA7ZKnteh8M4NnqMWECX_RMK5wt6R1uQZabnN_Zaa1n9bmaG16ZIn34_8GfwvXh8fjQHo6ODh7BDZ5VG8SzC9uL8yU-Jiq2cE8a-xfw-bI33D9aukze |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VVKq4IP4JFFgkOK7qXa8dW6iqgCZqKImqioreluyPEah1Qp2o4sZr9FV4HJ6EGXudnIpy6dmelT3e_eZb78w3AK-lw6iUKMVVEcdcCe95bkTBex73W8Y7IwUVJ4_G6cGJ-nianG7An7YWhtIqW0ysgdpNLf0j30EeIiQpoYidIqRFHO0P9mY_OXWQopPWtp1GM0UO_a9L3L5Vu8N9_NZvpBz0P3844KHDALdIU-Y8dvgGkbfOWKNkJI1PXCoxbvhUJT5W3innkeEkkygqbGxJzsr1vC2MySNjXYzj3oLNHu2KOrD5vj8-Ol5J_grVFOIlMc-EyEMeUZNdVqtVfj9HzKD0shyRKxWZvC44Xkd-6yA4uAt3Antl75rpdg82fHkftkbhfP4BfOkjYhAHLr-xCz-jCjZEU1bVadtBBeuMzWpNz7JiVNvCzhGOWLUw9EOo-vv7ilG3EByA17VOrBgdD6uHcHIjjn0EnXJa-ifAJkSqXKaS2OfKkn6coHpbpFGZnNjEdqHX-kzboGtO7TXOdJvA9kOvvK3J27rxdhfE0nLWaHusYZO3n0W3tauIthoD0Bq2b5e2gd80vGVN6-12FuiAM5VerYouvFpeRoSgY59J6acLvIcakmUqo3seN7Nn-boxtb9Sefr0_4O_hC1cbPrTcHz4DG7TQzUZPdvQmV8s_HPkZXPzIiwABl9ves39Ax2SUnk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+repetitive+spatiotemporal+patterns+from+many+subjects%E2%80%99+resting-state+fMRIs&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Takeda%2C+Yusuke&rft.au=Itahashi%2C+Takashi&rft.au=Sato%2C+Masa-aki&rft.au=Yamashita%2C+Okito&rft.date=2019-12-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=203&rft_id=info:doi/10.1016%2Fj.neuroimage.2019.116182&rft.externalDocID=S1053811919307736 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |