Estimating repetitive spatiotemporal patterns from many subjects’ resting-state fMRIs

Recently, we proposed a method to estimate repetitive spatiotemporal patterns from resting-state brain activity data (SpatioTemporal Pattern estimation, STeP) (Takeda et al., 2016). From such resting-state data as functional MRI (fMRI), STeP can estimate several spatiotemporal patterns and their ons...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 203; p. 116182
Main Authors Takeda, Yusuke, Itahashi, Takashi, Sato, Masa-aki, Yamashita, Okito
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.12.2019
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recently, we proposed a method to estimate repetitive spatiotemporal patterns from resting-state brain activity data (SpatioTemporal Pattern estimation, STeP) (Takeda et al., 2016). From such resting-state data as functional MRI (fMRI), STeP can estimate several spatiotemporal patterns and their onsets even if they are overlapping. Nowadays, a growing number of resting-state data are publicly available from such databases as the Autism Brain Imaging Data Exchange (ABIDE), which promote a better understanding of resting-state brain activities. In this study, we extend STeP to make it applicable to such big databases, thus proposing the method we call BigSTeP. From many subjects’ resting-state data, BigSTeP estimates spatiotemporal patterns that are common across subjects (common spatiotemporal patterns) as well as the corresponding spatiotemporal patterns in each subject (subject-specific spatiotemporal patterns). After verifying the performance of BigSTeP by simulation tests, we applied it to over 1,000 subjects’ resting-state fMRIs (rsfMRIs) obtained from ABIDE I. This revealed two common spatiotemporal patterns and the corresponding subject-specific spatiotemporal patterns. The common spatiotemporal patterns included spatial patterns resembling the default mode (DMN), sensorimotor, auditory, and visual networks, suggesting that these networks are time-locked with each other. We compared the subject-specific spatiotemporal patterns between autism spectrum disorder (ASD) and typically developed (TD) groups. As a result, significant differences were concentrated at a specific time in a pattern, when the DMN exhibited large positive activity. This suggests that the differences are context-dependent, that is, the differences in fMRI activities between ASDs and TDs do not always occur during the resting state but tend to occur when the DMN exhibits large positive activity. All of these results demonstrate the usefulness of BigSTeP in extracting inspiring hypotheses from big databases in a data-driven way. •We propose a method to estimate spatiotemporal patterns from resting-state data.•It can be applied to big databases, such as ABIDE and HCP.•It provides robust knowledge on spatiotemporal brain dynamics in the resting state.
AbstractList Recently, we proposed a method to estimate repetitive spatiotemporal patterns from resting-state brain activity data (SpatioTemporal Pattern estimation, STeP) (Takeda et al., 2016). From such resting-state data as functional MRI (fMRI), STeP can estimate several spatiotemporal patterns and their onsets even if they are overlapping. Nowadays, a growing number of resting-state data are publicly available from such databases as the Autism Brain Imaging Data Exchange (ABIDE), which promote a better understanding of resting-state brain activities. In this study, we extend STeP to make it applicable to such big databases, thus proposing the method we call BigSTeP. From many subjects’ resting-state data, BigSTeP estimates spatiotemporal patterns that are common across subjects (common spatiotemporal patterns) as well as the corresponding spatiotemporal patterns in each subject (subject-specific spatiotemporal patterns). After verifying the performance of BigSTeP by simulation tests, we applied it to over 1,000 subjects’ resting-state fMRIs (rsfMRIs) obtained from ABIDE I. This revealed two common spatiotemporal patterns and the corresponding subject-specific spatiotemporal patterns. The common spatiotemporal patterns included spatial patterns resembling the default mode (DMN), sensorimotor, auditory, and visual networks, suggesting that these networks are time-locked with each other. We compared the subject-specific spatiotemporal patterns between autism spectrum disorder (ASD) and typically developed (TD) groups. As a result, significant differences were concentrated at a specific time in a pattern, when the DMN exhibited large positive activity. This suggests that the differences are context-dependent, that is, the differences in fMRI activities between ASDs and TDs do not always occur during the resting state but tend to occur when the DMN exhibits large positive activity. All of these results demonstrate the usefulness of BigSTeP in extracting inspiring hypotheses from big databases in a data-driven way. •We propose a method to estimate spatiotemporal patterns from resting-state data.•It can be applied to big databases, such as ABIDE and HCP.•It provides robust knowledge on spatiotemporal brain dynamics in the resting state.
Recently, we proposed a method to estimate repetitive spatiotemporal patterns from resting-state brain activity data (SpatioTemporal Pattern estimation, STeP) (Takeda et al., 2016). From such resting-state data as functional MRI (fMRI), STeP can estimate several spatiotemporal patterns and their onsets even if they are overlapping. Nowadays, a growing number of resting-state data are publicly available from such databases as the Autism Brain Imaging Data Exchange (ABIDE), which promote a better understanding of resting-state brain activities. In this study, we extend STeP to make it applicable to such big databases, thus proposing the method we call BigSTeP. From many subjects’ resting-state data, BigSTeP estimates spatiotemporal patterns that are common across subjects (common spatiotemporal patterns) as well as the corresponding spatiotemporal patterns in each subject (subject-specific spatiotemporal patterns). After verifying the performance of BigSTeP by simulation tests, we applied it to over 1,000 subjects’ resting-state fMRIs (rsfMRIs) obtained from ABIDE I. This revealed two common spatiotemporal patterns and the corresponding subject-specific spatiotemporal patterns. The common spatiotemporal patterns included spatial patterns resembling the default mode (DMN), sensorimotor, auditory, and visual networks, suggesting that these networks are time-locked with each other. We compared the subject-specific spatiotemporal patterns between autism spectrum disorder (ASD) and typically developed (TD) groups. As a result, significant differences were concentrated at a specific time in a pattern, when the DMN exhibited large positive activity. This suggests that the differences are context-dependent, that is, the differences in fMRI activities between ASDs and TDs do not always occur during the resting state but tend to occur when the DMN exhibits large positive activity. All of these results demonstrate the usefulness of BigSTeP in extracting inspiring hypotheses from big databases in a data-driven way.
Recently, we proposed a method to estimate repetitive spatiotemporal patterns from resting-state brain activity data (SpatioTemporal Pattern estimation, STeP) (Takeda et al., 2016). From such resting-state data as functional MRI (fMRI), STeP can estimate several spatiotemporal patterns and their onsets even if they are overlapping. Nowadays, a growing number of resting-state data are publicly available from such databases as the Autism Brain Imaging Data Exchange (ABIDE), which promote a better understanding of resting-state brain activities. In this study, we extend STeP to make it applicable to such big databases, thus proposing the method we call BigSTeP. From many subjects' resting-state data, BigSTeP estimates spatiotemporal patterns that are common across subjects (common spatiotemporal patterns) as well as the corresponding spatiotemporal patterns in each subject (subject-specific spatiotemporal patterns). After verifying the performance of BigSTeP by simulation tests, we applied it to over 1,000 subjects' resting-state fMRIs (rsfMRIs) obtained from ABIDE I. This revealed two common spatiotemporal patterns and the corresponding subject-specific spatiotemporal patterns. The common spatiotemporal patterns included spatial patterns resembling the default mode (DMN), sensorimotor, auditory, and visual networks, suggesting that these networks are time-locked with each other. We compared the subject-specific spatiotemporal patterns between autism spectrum disorder (ASD) and typically developed (TD) groups. As a result, significant differences were concentrated at a specific time in a pattern, when the DMN exhibited large positive activity. This suggests that the differences are context-dependent, that is, the differences in fMRI activities between ASDs and TDs do not always occur during the resting state but tend to occur when the DMN exhibits large positive activity. All of these results demonstrate the usefulness of BigSTeP in extracting inspiring hypotheses from big databases in a data-driven way.
Recently, we proposed a method to estimate repetitive spatiotemporal patterns from resting-state brain activity data (SpatioTemporal Pattern estimation, STeP) (Takeda et al., 2016). From such resting-state data as functional MRI (fMRI), STeP can estimate several spatiotemporal patterns and their onsets even if they are overlapping. Nowadays, a growing number of resting-state data are publicly available from such databases as the Autism Brain Imaging Data Exchange (ABIDE), which promote a better understanding of resting-state brain activities. In this study, we extend STeP to make it applicable to such big databases, thus proposing the method we call BigSTeP. From many subjects' resting-state data, BigSTeP estimates spatiotemporal patterns that are common across subjects (common spatiotemporal patterns) as well as the corresponding spatiotemporal patterns in each subject (subject-specific spatiotemporal patterns). After verifying the performance of BigSTeP by simulation tests, we applied it to over 1,000 subjects' resting-state fMRIs (rsfMRIs) obtained from ABIDE I. This revealed two common spatiotemporal patterns and the corresponding subject-specific spatiotemporal patterns. The common spatiotemporal patterns included spatial patterns resembling the default mode (DMN), sensorimotor, auditory, and visual networks, suggesting that these networks are time-locked with each other. We compared the subject-specific spatiotemporal patterns between autism spectrum disorder (ASD) and typically developed (TD) groups. As a result, significant differences were concentrated at a specific time in a pattern, when the DMN exhibited large positive activity. This suggests that the differences are context-dependent, that is, the differences in fMRI activities between ASDs and TDs do not always occur during the resting state but tend to occur when the DMN exhibits large positive activity. All of these results demonstrate the usefulness of BigSTeP in extracting inspiring hypotheses from big databases in a data-driven way.Recently, we proposed a method to estimate repetitive spatiotemporal patterns from resting-state brain activity data (SpatioTemporal Pattern estimation, STeP) (Takeda et al., 2016). From such resting-state data as functional MRI (fMRI), STeP can estimate several spatiotemporal patterns and their onsets even if they are overlapping. Nowadays, a growing number of resting-state data are publicly available from such databases as the Autism Brain Imaging Data Exchange (ABIDE), which promote a better understanding of resting-state brain activities. In this study, we extend STeP to make it applicable to such big databases, thus proposing the method we call BigSTeP. From many subjects' resting-state data, BigSTeP estimates spatiotemporal patterns that are common across subjects (common spatiotemporal patterns) as well as the corresponding spatiotemporal patterns in each subject (subject-specific spatiotemporal patterns). After verifying the performance of BigSTeP by simulation tests, we applied it to over 1,000 subjects' resting-state fMRIs (rsfMRIs) obtained from ABIDE I. This revealed two common spatiotemporal patterns and the corresponding subject-specific spatiotemporal patterns. The common spatiotemporal patterns included spatial patterns resembling the default mode (DMN), sensorimotor, auditory, and visual networks, suggesting that these networks are time-locked with each other. We compared the subject-specific spatiotemporal patterns between autism spectrum disorder (ASD) and typically developed (TD) groups. As a result, significant differences were concentrated at a specific time in a pattern, when the DMN exhibited large positive activity. This suggests that the differences are context-dependent, that is, the differences in fMRI activities between ASDs and TDs do not always occur during the resting state but tend to occur when the DMN exhibits large positive activity. All of these results demonstrate the usefulness of BigSTeP in extracting inspiring hypotheses from big databases in a data-driven way.
ArticleNumber 116182
Author Itahashi, Takashi
Takeda, Yusuke
Sato, Masa-aki
Yamashita, Okito
Author_xml – sequence: 1
  givenname: Yusuke
  surname: Takeda
  fullname: Takeda, Yusuke
  email: takeda@atr.jp
  organization: Computational Brain Dynamics Team, RIKEN Center for Advanced Intelligence Project, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0288, Japan
– sequence: 2
  givenname: Takashi
  surname: Itahashi
  fullname: Itahashi, Takashi
  organization: Medical Institute of Developmental Disabilities Research, Showa University, 6-11-11 Kita-karasuyama, Setagaya-ku, Tokyo, 157-8577, Japan
– sequence: 3
  givenname: Masa-aki
  surname: Sato
  fullname: Sato, Masa-aki
  organization: Department of Computational Brain Imaging, ATR Neural Information Analysis Laboratories, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0288, Japan
– sequence: 4
  givenname: Okito
  surname: Yamashita
  fullname: Yamashita, Okito
  organization: Computational Brain Dynamics Team, RIKEN Center for Advanced Intelligence Project, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0288, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31525496$$D View this record in MEDLINE/PubMed
BookMark eNqNkd2K1TAUhYOMOD_6ClLwxpsek7TpaW5EHUYdGBFE8TKkO7tDapvUJB04d76Gr-eTmHpmEM7VucoPa317s9Y5OXHeISEFoxtGWfNq2DhcgreTvsUNp0xuGGtYyx-RM0alKKXY8pP1LqqyZUyekvMYB0qpZHX7hJxWTHBRy-aMfL-KKWOSdbdFwBmTTfYOizjnL59wmn3QY5FfCYOLRR_8VEza7Yq4dANCin9-_c7GuALKmHTCov_05To-JY97PUZ8dn9ekG_vr75efixvPn-4vnx7U4LYilRWBgEogumgqznlHQrTcEDEphZY1Whqg7LiQlPaQwVsK6nZIvRdJ2kHprogL_fcOfifS95DTTYCjqN26JeoOJectnUrWZa-OJAOfgkub6d4xRhnUvxTPb9XLd2ERs0hxxN26iGyLHi9F0DwMQbsFdi0puVS0HZUjKq1IzWo_x2ptSO17ygD2gPAw4wjrO_2VsyR3lkMKoJFB2hsyGUo4-0xkDcHEBits6DHH7g7DvEX0hbLSQ
CitedBy_id crossref_primary_10_3389_fpsyt_2023_1199113
crossref_primary_10_1016_j_neuroimage_2022_119013
crossref_primary_10_1016_j_neuroimage_2021_118711
Cites_doi 10.1038/nature04587
10.1038/nn1825
10.1002/hbm.23288
10.1073/pnas.0911855107
10.1126/science.8036517
10.1038/nrn2201
10.1126/science.1093173
10.1073/pnas.1306031110
10.1073/pnas.0504136102
10.1111/j.2517-6161.1995.tb02031.x
10.1002/hbm.1048
10.1073/pnas.1216856110
10.1016/j.neuroimage.2010.08.030
10.1038/35084005
10.3389/fneur.2018.00556
10.1038/nn1675
10.1016/0010-0277(88)90011-X
10.1162/089976606775093882
10.3389/fpsyt.2016.00205
10.1016/j.neuroimage.2018.12.037
10.1038/ncomms11254
10.1093/cercor/bhs352
10.1073/pnas.0905267106
10.1186/s13229-015-0026-z
10.1016/j.neuroimage.2016.03.014
10.3389/fnins.2017.00115
10.1371/journal.pbio.3000042
10.1117/1.JBO.17.10.106004
10.1016/j.neuron.2008.08.026
10.1002/mrm.1910340409
10.1073/pnas.1530509100
10.1016/j.neuroimage.2017.10.048
10.3389/fnhum.2014.00074
10.1073/pnas.98.2.676
10.1093/brain/awr263
10.1093/brain/awt079
10.3389/fnhum.2015.00285
10.1038/nature09633
10.1098/rstb.2005.1634
10.1038/mp.2013.78
10.1016/j.neuroimage.2011.10.018
10.3389/fnhum.2013.00458
10.3389/fnhum.2016.00311
10.1038/376033a0
10.1038/s41598-019-40427-7
10.3389/fnsys.2013.00101
10.1016/j.neuroimage.2018.01.041
ContentType Journal Article
Copyright 2019 The Authors
Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.
2019. The Authors
Copyright_xml – notice: 2019 The Authors
– notice: Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: 2019. The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
DOI 10.1016/j.neuroimage.2019.116182
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
ProQuest Biological Science
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
ProQuest One Psychology

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
ExternalDocumentID 31525496
10_1016_j_neuroimage_2019_116182
S1053811919307736
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADFRT
ADMUD
ADNMO
ADVLN
ADXHL
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRLJ
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HDW
HEI
HMCUK
HMK
HMO
HMQ
HVGLF
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SNS
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
WUQ
XPP
YK3
Z5R
ZMT
ZU3
~G-
3V.
6I.
AACTN
AADPK
AAFTH
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
LCYCR
NCXOZ
RIG
ZA5
AAYXX
AGRNS
ALIPV
CITATION
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
ID FETCH-LOGICAL-c575t-3decc0ecdbcb4202be5d62ceee645e34ed4de9325a00fc3c1790d7ecfbb90bcd3
IEDL.DBID 7X7
ISSN 1053-8119
1095-9572
IngestDate Fri Jul 11 11:19:00 EDT 2025
Wed Aug 13 09:45:12 EDT 2025
Thu Apr 03 07:03:24 EDT 2025
Tue Jul 01 03:02:10 EDT 2025
Thu Apr 24 22:57:26 EDT 2025
Fri Feb 23 02:47:36 EST 2024
Tue Aug 26 20:02:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords fMRI
Big data
Resting state
Spatiotemporal pattern
The autism brain imaging data exchange (ABIDE)
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c575t-3decc0ecdbcb4202be5d62ceee645e34ed4de9325a00fc3c1790d7ecfbb90bcd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1053811919307736
PMID 31525496
PQID 2311219591
PQPubID 2031077
ParticipantIDs proquest_miscellaneous_2292084891
proquest_journals_2311219591
pubmed_primary_31525496
crossref_citationtrail_10_1016_j_neuroimage_2019_116182
crossref_primary_10_1016_j_neuroimage_2019_116182
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2019_116182
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2019_116182
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2019
2019-12-00
20191201
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: December 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2019
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Medaglia, Satterthwaite, Kelkar, Ciric, Moore, Ruparel, Gur, Gur, Bassett (bib30) 2018; 166
Biswal, Mennes, Zuo, Gohel, Kelly, Smith, Beckmann, Adelstein, Buckner, Colcombe, Dogonowski, Ernst, Fair, Hampson, Hoptman, Hyde, Kiviniemi, Kötter, Li, Lin, Lowe, Mackay, Madden, Madsen, Margulies, Mayberg, McMahon, Monk, Mostofsky, Nagel, Pekar, Peltier, Petersen, Riedl, Rombouts, Rypma, Schlaggar, Schmidt, Seidler, Siegle, Sorg, Teng, Veijola, Villringer, Walter, Wang, Weng, Whitfield-Gabrieli, Williamson, Windischberger, Zang, Zhang, Castellanos, Milham (bib6) 2010; 107
Itahashi, Yamada, Watanabe, Nakamura, Ohta, Kanai, Iwanami, Kato, Hashimoto (bib20) 2015; 6
Takeda, Hiroe, Yamashita, Sato (bib39) 2016; 133
Smith, Fox, Miller, Glahn, Fox, Mackay, Filippini, Watkins, Toro, Laird, Beckmann (bib37) 2009; 106
Ikegaya, Aaron, Cossart, Aronov, Lampl, Ferster, Yuste (bib19) 2004; 304
Majeed, Magnuson, Hasenkamp, Schwarb, Schumacher, Barsalou, Keilholz (bib29) 2011; 54
Yahata, Morimoto, Hashimoto, Lisi, Shibata, Kawakubo, Kuwabara, Kuroda, Yamada, Megumi, Imamizu, Náñez, Takahashi, Okamoto, Kasai, Kato, Sasaki, Watanabe, Kawato (bib46) 2016; 7
Shmuel, Augath, Oeltermann, Logothetis (bib36) 2006; 9
Erdoǧan, Tong, Hocke, Lindsey, deB Frederick (bib12) 2016; 10
Yamashita, Yahata, Itahashi, Lisi, Yamada, Ichikawa, Takamura, Yoshihara, Kunimatsu, Okada, Yamagata, Matsuo, Hashimoto, Okada, Sakai, Morimoto, Narumoto, Shimada, Kasai, Kato, Takahashi, Okamoto, Tanaka, Kawato, Yamashita, Imamizu (bib47) 2019; 17
Uddin, Supekar, Menon (bib42) 2013; 7
Anderson, Nielsen, Froehlich, DuBray, Druzgal, Cariello, Cooperrider, Zielinski, Ravichandran, Fletcher, Alexander, Bigler, Lange, Lainhart (bib2) 2011; 134
Benjamini, Hochberg (bib5) 1995; 57
Han, Caporale, Dan (bib16) 2008; 60
Raichle, MacLeod, Snyder, Powers, Gusnard, Shulman (bib35) 2001; 98
Tong, Hocke, Fan, Janes, Frederick (bib40) 2015; 9
Fox, Raichle (bib14) 2007; 8
Nair, Treiber, Shukla, Shih, Müller (bib31) 2013; 136
Allen, Damaraju, Plis, Erhardt, Eichele, Calhoun (bib1) 2014; 24
Li, Mai, Liu (bib24) 2014; 8
Foster, Wilson (bib13) 2006; 440
Tong, Hocke, Licata, Frederick (bib41) 2012; 17
Calhoun, Adali, Pearlson, Pekar (bib8) 2001; 14
Biswal, Yetkin, Haughton, Hyde (bib7) 1995; 34
Fox, Snyder, Vincent, Corbetta, Van Essen, Raichle (bib15) 2005; 102
Baron-Cohen (bib3) 1988; 29
Lau, Leung, Lau (bib23) 2019; 9
Liu, Zhang, Chang, Duyn (bib27) 2018; 180
Dragoi, Tonegawa (bib11) 2013; 110
Di Martino, Yan, Li, Denio, Castellanos, Alaerts, Anderson, Assaf, Bookheimer, Dapretto, Deen, Delmonte, Dinstein, Ertl-Wagner, Fair, Gallagher, Kennedy, Keown, Keysers, Lainhart, Lord, Luna, Menon, Minshew, Monk, Mueller, Müller, Nebel, Nigg, O’Hearn, Pelphrey, Peltier, Rudie, Sunaert, Thioux, Tyszka, Uddin, Verhoeven, Wenderoth, Wiggins, Mostofsky, Milham (bib9) 2014; 19
Patriquin, DeRamus, Libero, Laird, Kana (bib33) 2016; 37
Liu, Duyn (bib26) 2013; 110
Liu, Chang, Duyn (bib25) 2013; 7
Wang, Liu, Shi, Liu, Ma, Ma, Tian, Gong, Wang (bib43) 2018; 9
Hopfield (bib17) 1995; 376
Storey, Tibshirani (bib38) 2003; 100
Hull, Dokovna, Jacokes, Torgerson, Irimia, Van Horn (bib18) 2017; 7
Wilson, McNaughton (bib44) 1994; 265
Dragoi, Tonegawa (bib10) 2011; 469
Beckmann, DeLuca, Devlin, Smith (bib4) 2005; 360
Ji, Wilson (bib22) 2007; 10
Izhikevich (bib21) 2006; 18
Logothetis, Pauls, Augath, Trinath, Oeltermann (bib28) 2001; 412
Xie, Zheng, Handwerker, Bandettini, Calhoun, Mitra, Gonzalez-Castillo (bib45) 2019; 188
Nickerson, Smith, Öngür, Beckmann (bib32) 2017; 11
Power, Barnes, Snyder, Schlaggar, Petersen (bib34) 2012; 59
Izhikevich (10.1016/j.neuroimage.2019.116182_bib21) 2006; 18
Logothetis (10.1016/j.neuroimage.2019.116182_bib28) 2001; 412
Hopfield (10.1016/j.neuroimage.2019.116182_bib17) 1995; 376
Storey (10.1016/j.neuroimage.2019.116182_bib38) 2003; 100
Allen (10.1016/j.neuroimage.2019.116182_bib1) 2014; 24
Liu (10.1016/j.neuroimage.2019.116182_bib26) 2013; 110
Shmuel (10.1016/j.neuroimage.2019.116182_bib36) 2006; 9
Liu (10.1016/j.neuroimage.2019.116182_bib25) 2013; 7
Beckmann (10.1016/j.neuroimage.2019.116182_bib4) 2005; 360
Ji (10.1016/j.neuroimage.2019.116182_bib22) 2007; 10
Wang (10.1016/j.neuroimage.2019.116182_bib43) 2018; 9
Wilson (10.1016/j.neuroimage.2019.116182_bib44) 1994; 265
Medaglia (10.1016/j.neuroimage.2019.116182_bib30) 2018; 166
Hull (10.1016/j.neuroimage.2019.116182_bib18) 2017; 7
Fox (10.1016/j.neuroimage.2019.116182_bib15) 2005; 102
Baron-Cohen (10.1016/j.neuroimage.2019.116182_bib3) 1988; 29
Majeed (10.1016/j.neuroimage.2019.116182_bib29) 2011; 54
Power (10.1016/j.neuroimage.2019.116182_bib34) 2012; 59
Xie (10.1016/j.neuroimage.2019.116182_bib45) 2019; 188
Dragoi (10.1016/j.neuroimage.2019.116182_bib11) 2013; 110
Yahata (10.1016/j.neuroimage.2019.116182_bib46) 2016; 7
Takeda (10.1016/j.neuroimage.2019.116182_bib39) 2016; 133
Lau (10.1016/j.neuroimage.2019.116182_bib23) 2019; 9
Biswal (10.1016/j.neuroimage.2019.116182_bib7) 1995; 34
Han (10.1016/j.neuroimage.2019.116182_bib16) 2008; 60
Uddin (10.1016/j.neuroimage.2019.116182_bib42) 2013; 7
Liu (10.1016/j.neuroimage.2019.116182_bib27) 2018; 180
Biswal (10.1016/j.neuroimage.2019.116182_bib6) 2010; 107
Calhoun (10.1016/j.neuroimage.2019.116182_bib8) 2001; 14
Itahashi (10.1016/j.neuroimage.2019.116182_bib20) 2015; 6
Nair (10.1016/j.neuroimage.2019.116182_bib31) 2013; 136
Nickerson (10.1016/j.neuroimage.2019.116182_bib32) 2017; 11
Raichle (10.1016/j.neuroimage.2019.116182_bib35) 2001; 98
Tong (10.1016/j.neuroimage.2019.116182_bib40) 2015; 9
Foster (10.1016/j.neuroimage.2019.116182_bib13) 2006; 440
Fox (10.1016/j.neuroimage.2019.116182_bib14) 2007; 8
Dragoi (10.1016/j.neuroimage.2019.116182_bib10) 2011; 469
Li (10.1016/j.neuroimage.2019.116182_bib24) 2014; 8
Benjamini (10.1016/j.neuroimage.2019.116182_bib5) 1995; 57
Tong (10.1016/j.neuroimage.2019.116182_bib41) 2012; 17
Erdoǧan (10.1016/j.neuroimage.2019.116182_bib12) 2016; 10
Patriquin (10.1016/j.neuroimage.2019.116182_bib33) 2016; 37
Anderson (10.1016/j.neuroimage.2019.116182_bib2) 2011; 134
Smith (10.1016/j.neuroimage.2019.116182_bib37) 2009; 106
Di Martino (10.1016/j.neuroimage.2019.116182_bib9) 2014; 19
Ikegaya (10.1016/j.neuroimage.2019.116182_bib19) 2004; 304
Yamashita (10.1016/j.neuroimage.2019.116182_bib47) 2019; 17
References_xml – volume: 29
  start-page: 83
  year: 1988
  end-page: 84
  ident: bib3
  article-title: Without a theory of mind one cannot participate in a conversation
  publication-title: Cognition
– volume: 110
  start-page: 4392
  year: 2013
  end-page: 4397
  ident: bib26
  article-title: Time-varying functional network information extracted from brief instances of spontaneous brain activity
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 7
  start-page: 11254
  year: 2016
  ident: bib46
  article-title: A small number of abnormal brain connections predicts adult autism spectrum disorder
  publication-title: Nat. Commun.
– volume: 11
  start-page: 115
  year: 2017
  ident: bib32
  article-title: Using dual regression to investigate network shape and amplitude in functional connectivity analyses
  publication-title: Front. Neurosci.
– volume: 57
  start-page: 289
  year: 1995
  end-page: 300
  ident: bib5
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J. R. Stat. Ser. Soc. B Stat. Methodol.
– volume: 7
  start-page: 458
  year: 2013
  ident: bib42
  article-title: Reconceptualizing functional brain connectivity in autism from a developmental perspective
  publication-title: Front. Hum. Neurosci.
– volume: 98
  start-page: 676
  year: 2001
  end-page: 682
  ident: bib35
  article-title: A default mode of brain function
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 9
  start-page: 556
  year: 2018
  ident: bib43
  article-title: Altered resting-state functional activity in patients with autism spectrum disorder: a quantitative meta-analysis
  publication-title: Front. Neurol.
– volume: 107
  start-page: 4734
  year: 2010
  end-page: 4739
  ident: bib6
  article-title: Toward discovery science of human brain function
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 10
  start-page: 100
  year: 2007
  end-page: 107
  ident: bib22
  article-title: Coordinated memory replay in the visual cortex and hippocampus during sleep
  publication-title: Nat. Neurosci.
– volume: 10
  start-page: 311
  year: 2016
  ident: bib12
  article-title: Correcting for blood arrival time in global mean regression enhances functional connectivity analysis of resting state fMRI-BOLD signals
  publication-title: Front. Hum. Neurosci.
– volume: 265
  start-page: 676
  year: 1994
  end-page: 679
  ident: bib44
  article-title: Reactivation of hippocampal ensemble memories during sleep
  publication-title: Science
– volume: 102
  start-page: 9673
  year: 2005
  end-page: 9678
  ident: bib15
  article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 136
  start-page: 1942
  year: 2013
  end-page: 1955
  ident: bib31
  article-title: Impaired thalamocortical connectivity in autism spectrum disorder: a study of functional and anatomical connectivity
  publication-title: Brain
– volume: 8
  start-page: 700
  year: 2007
  end-page: 711
  ident: bib14
  article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging
  publication-title: Nat. Rev. Neurosci.
– volume: 100
  start-page: 9440
  year: 2003
  end-page: 9445
  ident: bib38
  article-title: Statistical significance for genomewide studies
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 188
  start-page: 502
  year: 2019
  end-page: 514
  ident: bib45
  article-title: Efficacy of different dynamic functional connectivity methods to capture cognitively relevant information
  publication-title: Neuroimage
– volume: 34
  start-page: 537
  year: 1995
  end-page: 541
  ident: bib7
  article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI
  publication-title: Magn. Reson. Med.
– volume: 7
  start-page: 205
  year: 2017
  ident: bib18
  article-title: Resting-state functional connectivity in autism spectrum disorders: a review
  publication-title: Front. Psychiatry
– volume: 134
  start-page: 3742
  year: 2011
  end-page: 3754
  ident: bib2
  article-title: Functional connectivity magnetic resonance imaging classification of autism
  publication-title: Brain
– volume: 304
  start-page: 559
  year: 2004
  end-page: 564
  ident: bib19
  article-title: Synfire chains and cortical songs: temporal modules of cortical activity
  publication-title: Science
– volume: 110
  start-page: 9100
  year: 2013
  end-page: 9105
  ident: bib11
  article-title: Distinct preplay of multiple novel spatial experiences in the rat
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 37
  start-page: 3957
  year: 2016
  end-page: 3978
  ident: bib33
  article-title: Neuroanatomical and neurofunctional markers of social cognition in autism spectrum disorder
  publication-title: Hum. Brain Mapp.
– volume: 59
  start-page: 2142
  year: 2012
  end-page: 2154
  ident: bib34
  article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion
  publication-title: Neuroimage
– volume: 17
  start-page: 106004
  year: 2012
  ident: bib41
  article-title: Low-frequency oscillations measured in the periphery with near-infrared spectroscopy are strongly correlated with blood oxygen level-dependent functional magnetic resonance imaging signals
  publication-title: J. Biomed. Opt.
– volume: 24
  start-page: 663
  year: 2014
  end-page: 676
  ident: bib1
  article-title: Tracking whole-brain connectivity dynamics in the resting state
  publication-title: Cerebr. Cortex
– volume: 106
  start-page: 13040
  year: 2009
  end-page: 13045
  ident: bib37
  article-title: Correspondence of the brain’s functional architecture during activation and rest
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 9
  start-page: 3892
  year: 2019
  ident: bib23
  article-title: Resting-state abnormalities in autism spectrum disorders: a meta-analysis
  publication-title: Sci. Rep.
– volume: 180
  start-page: 485
  year: 2018
  end-page: 494
  ident: bib27
  article-title: Co-activation patterns in resting-state fMRI signals
  publication-title: Neuroimage
– volume: 60
  start-page: 321
  year: 2008
  end-page: 327
  ident: bib16
  article-title: Reverberation of recent visual experience in spontaneous cortical waves
  publication-title: Neuron
– volume: 6
  start-page: 30
  year: 2015
  ident: bib20
  article-title: Alterations of local spontaneous brain activity and connectivity in adults with high-functioning autism spectrum disorder
  publication-title: Mol. Autism.
– volume: 7
  start-page: 101
  year: 2013
  ident: bib25
  article-title: Decomposition of spontaneous brain activity into distinct fMRI co-activation patterns
  publication-title: Front. Syst. Neurosci.
– volume: 19
  start-page: 659
  year: 2014
  end-page: 667
  ident: bib9
  article-title: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism
  publication-title: Mol. Psychiatry
– volume: 18
  start-page: 245
  year: 2006
  end-page: 282
  ident: bib21
  article-title: Polychronization: computation with spikes
  publication-title: Neural Comput.
– volume: 17
  year: 2019
  ident: bib47
  article-title: Harmonization of resting-state functional MRI data across multiple imaging sites via the separation of site differences into sampling bias and measurement bias
  publication-title: PLoS Biol.
– volume: 54
  start-page: 1140
  year: 2011
  end-page: 1150
  ident: bib29
  article-title: Spatiotemporal dynamics of low frequency BOLD fluctuations in rats and humans
  publication-title: Neuroimage
– volume: 440
  start-page: 680
  year: 2006
  end-page: 683
  ident: bib13
  article-title: Reverse replay of behavioural sequences in hippocampal place cells during the awake state
  publication-title: Nature
– volume: 8
  start-page: 74
  year: 2014
  ident: bib24
  article-title: The default mode network and social understanding of others: what do brain connectivity studies tell us
  publication-title: Front. Hum. Neurosci.
– volume: 360
  start-page: 1001
  year: 2005
  end-page: 1013
  ident: bib4
  article-title: Investigations into resting-state connectivity using independent component analysis
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
– volume: 9
  start-page: 285
  year: 2015
  ident: bib40
  article-title: Can apparent resting state connectivity arise from systemic fluctuations?
  publication-title: Front. Hum. Neurosci.
– volume: 14
  start-page: 140
  year: 2001
  end-page: 151
  ident: bib8
  article-title: A method for making group inferences from functional MRI data using independent component analysis
  publication-title: Hum. Brain Mapp.
– volume: 166
  start-page: 293
  year: 2018
  end-page: 306
  ident: bib30
  article-title: Brain state expression and transitions are related to complex executive cognition in normative neurodevelopment
  publication-title: Neuroimage
– volume: 376
  start-page: 33
  year: 1995
  end-page: 36
  ident: bib17
  article-title: Pattern recognition computation using action potential timing for stimulus representation
  publication-title: Nature
– volume: 412
  start-page: 150
  year: 2001
  end-page: 157
  ident: bib28
  article-title: Neurophysiological investigation of the basis of the fMRI signal
  publication-title: Nature
– volume: 9
  start-page: 569
  year: 2006
  end-page: 577
  ident: bib36
  article-title: Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1
  publication-title: Nat. Neurosci.
– volume: 133
  start-page: 251
  year: 2016
  end-page: 265
  ident: bib39
  article-title: Estimating repetitive spatiotemporal patterns from resting-state brain activity data
  publication-title: Neuroimage
– volume: 469
  start-page: 397
  year: 2011
  end-page: 401
  ident: bib10
  article-title: Preplay of future place cell sequences by hippocampal cellular assemblies
  publication-title: Nature
– volume: 440
  start-page: 680
  year: 2006
  ident: 10.1016/j.neuroimage.2019.116182_bib13
  article-title: Reverse replay of behavioural sequences in hippocampal place cells during the awake state
  publication-title: Nature
  doi: 10.1038/nature04587
– volume: 10
  start-page: 100
  year: 2007
  ident: 10.1016/j.neuroimage.2019.116182_bib22
  article-title: Coordinated memory replay in the visual cortex and hippocampus during sleep
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1825
– volume: 37
  start-page: 3957
  year: 2016
  ident: 10.1016/j.neuroimage.2019.116182_bib33
  article-title: Neuroanatomical and neurofunctional markers of social cognition in autism spectrum disorder
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23288
– volume: 107
  start-page: 4734
  year: 2010
  ident: 10.1016/j.neuroimage.2019.116182_bib6
  article-title: Toward discovery science of human brain function
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0911855107
– volume: 265
  start-page: 676
  year: 1994
  ident: 10.1016/j.neuroimage.2019.116182_bib44
  article-title: Reactivation of hippocampal ensemble memories during sleep
  publication-title: Science
  doi: 10.1126/science.8036517
– volume: 8
  start-page: 700
  year: 2007
  ident: 10.1016/j.neuroimage.2019.116182_bib14
  article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2201
– volume: 304
  start-page: 559
  year: 2004
  ident: 10.1016/j.neuroimage.2019.116182_bib19
  article-title: Synfire chains and cortical songs: temporal modules of cortical activity
  publication-title: Science
  doi: 10.1126/science.1093173
– volume: 110
  start-page: 9100
  year: 2013
  ident: 10.1016/j.neuroimage.2019.116182_bib11
  article-title: Distinct preplay of multiple novel spatial experiences in the rat
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1306031110
– volume: 102
  start-page: 9673
  year: 2005
  ident: 10.1016/j.neuroimage.2019.116182_bib15
  article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0504136102
– volume: 57
  start-page: 289
  year: 1995
  ident: 10.1016/j.neuroimage.2019.116182_bib5
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J. R. Stat. Ser. Soc. B Stat. Methodol.
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 14
  start-page: 140
  year: 2001
  ident: 10.1016/j.neuroimage.2019.116182_bib8
  article-title: A method for making group inferences from functional MRI data using independent component analysis
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.1048
– volume: 110
  start-page: 4392
  year: 2013
  ident: 10.1016/j.neuroimage.2019.116182_bib26
  article-title: Time-varying functional network information extracted from brief instances of spontaneous brain activity
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1216856110
– volume: 54
  start-page: 1140
  year: 2011
  ident: 10.1016/j.neuroimage.2019.116182_bib29
  article-title: Spatiotemporal dynamics of low frequency BOLD fluctuations in rats and humans
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.08.030
– volume: 412
  start-page: 150
  year: 2001
  ident: 10.1016/j.neuroimage.2019.116182_bib28
  article-title: Neurophysiological investigation of the basis of the fMRI signal
  publication-title: Nature
  doi: 10.1038/35084005
– volume: 9
  start-page: 556
  year: 2018
  ident: 10.1016/j.neuroimage.2019.116182_bib43
  article-title: Altered resting-state functional activity in patients with autism spectrum disorder: a quantitative meta-analysis
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2018.00556
– volume: 9
  start-page: 569
  year: 2006
  ident: 10.1016/j.neuroimage.2019.116182_bib36
  article-title: Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1675
– volume: 29
  start-page: 83
  year: 1988
  ident: 10.1016/j.neuroimage.2019.116182_bib3
  article-title: Without a theory of mind one cannot participate in a conversation
  publication-title: Cognition
  doi: 10.1016/0010-0277(88)90011-X
– volume: 18
  start-page: 245
  year: 2006
  ident: 10.1016/j.neuroimage.2019.116182_bib21
  article-title: Polychronization: computation with spikes
  publication-title: Neural Comput.
  doi: 10.1162/089976606775093882
– volume: 7
  start-page: 205
  year: 2017
  ident: 10.1016/j.neuroimage.2019.116182_bib18
  article-title: Resting-state functional connectivity in autism spectrum disorders: a review
  publication-title: Front. Psychiatry
  doi: 10.3389/fpsyt.2016.00205
– volume: 188
  start-page: 502
  year: 2019
  ident: 10.1016/j.neuroimage.2019.116182_bib45
  article-title: Efficacy of different dynamic functional connectivity methods to capture cognitively relevant information
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.12.037
– volume: 7
  start-page: 11254
  year: 2016
  ident: 10.1016/j.neuroimage.2019.116182_bib46
  article-title: A small number of abnormal brain connections predicts adult autism spectrum disorder
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11254
– volume: 24
  start-page: 663
  year: 2014
  ident: 10.1016/j.neuroimage.2019.116182_bib1
  article-title: Tracking whole-brain connectivity dynamics in the resting state
  publication-title: Cerebr. Cortex
  doi: 10.1093/cercor/bhs352
– volume: 106
  start-page: 13040
  year: 2009
  ident: 10.1016/j.neuroimage.2019.116182_bib37
  article-title: Correspondence of the brain’s functional architecture during activation and rest
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0905267106
– volume: 6
  start-page: 30
  year: 2015
  ident: 10.1016/j.neuroimage.2019.116182_bib20
  article-title: Alterations of local spontaneous brain activity and connectivity in adults with high-functioning autism spectrum disorder
  publication-title: Mol. Autism.
  doi: 10.1186/s13229-015-0026-z
– volume: 133
  start-page: 251
  year: 2016
  ident: 10.1016/j.neuroimage.2019.116182_bib39
  article-title: Estimating repetitive spatiotemporal patterns from resting-state brain activity data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.03.014
– volume: 11
  start-page: 115
  year: 2017
  ident: 10.1016/j.neuroimage.2019.116182_bib32
  article-title: Using dual regression to investigate network shape and amplitude in functional connectivity analyses
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2017.00115
– volume: 17
  year: 2019
  ident: 10.1016/j.neuroimage.2019.116182_bib47
  article-title: Harmonization of resting-state functional MRI data across multiple imaging sites via the separation of site differences into sampling bias and measurement bias
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.3000042
– volume: 17
  start-page: 106004
  year: 2012
  ident: 10.1016/j.neuroimage.2019.116182_bib41
  article-title: Low-frequency oscillations measured in the periphery with near-infrared spectroscopy are strongly correlated with blood oxygen level-dependent functional magnetic resonance imaging signals
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.JBO.17.10.106004
– volume: 60
  start-page: 321
  year: 2008
  ident: 10.1016/j.neuroimage.2019.116182_bib16
  article-title: Reverberation of recent visual experience in spontaneous cortical waves
  publication-title: Neuron
  doi: 10.1016/j.neuron.2008.08.026
– volume: 34
  start-page: 537
  year: 1995
  ident: 10.1016/j.neuroimage.2019.116182_bib7
  article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910340409
– volume: 100
  start-page: 9440
  year: 2003
  ident: 10.1016/j.neuroimage.2019.116182_bib38
  article-title: Statistical significance for genomewide studies
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1530509100
– volume: 166
  start-page: 293
  year: 2018
  ident: 10.1016/j.neuroimage.2019.116182_bib30
  article-title: Brain state expression and transitions are related to complex executive cognition in normative neurodevelopment
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.10.048
– volume: 8
  start-page: 74
  year: 2014
  ident: 10.1016/j.neuroimage.2019.116182_bib24
  article-title: The default mode network and social understanding of others: what do brain connectivity studies tell us
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2014.00074
– volume: 98
  start-page: 676
  year: 2001
  ident: 10.1016/j.neuroimage.2019.116182_bib35
  article-title: A default mode of brain function
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.98.2.676
– volume: 134
  start-page: 3742
  year: 2011
  ident: 10.1016/j.neuroimage.2019.116182_bib2
  article-title: Functional connectivity magnetic resonance imaging classification of autism
  publication-title: Brain
  doi: 10.1093/brain/awr263
– volume: 136
  start-page: 1942
  year: 2013
  ident: 10.1016/j.neuroimage.2019.116182_bib31
  article-title: Impaired thalamocortical connectivity in autism spectrum disorder: a study of functional and anatomical connectivity
  publication-title: Brain
  doi: 10.1093/brain/awt079
– volume: 9
  start-page: 285
  year: 2015
  ident: 10.1016/j.neuroimage.2019.116182_bib40
  article-title: Can apparent resting state connectivity arise from systemic fluctuations?
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2015.00285
– volume: 469
  start-page: 397
  year: 2011
  ident: 10.1016/j.neuroimage.2019.116182_bib10
  article-title: Preplay of future place cell sequences by hippocampal cellular assemblies
  publication-title: Nature
  doi: 10.1038/nature09633
– volume: 360
  start-page: 1001
  year: 2005
  ident: 10.1016/j.neuroimage.2019.116182_bib4
  article-title: Investigations into resting-state connectivity using independent component analysis
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
  doi: 10.1098/rstb.2005.1634
– volume: 19
  start-page: 659
  year: 2014
  ident: 10.1016/j.neuroimage.2019.116182_bib9
  article-title: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2013.78
– volume: 59
  start-page: 2142
  year: 2012
  ident: 10.1016/j.neuroimage.2019.116182_bib34
  article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.10.018
– volume: 7
  start-page: 458
  year: 2013
  ident: 10.1016/j.neuroimage.2019.116182_bib42
  article-title: Reconceptualizing functional brain connectivity in autism from a developmental perspective
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2013.00458
– volume: 10
  start-page: 311
  year: 2016
  ident: 10.1016/j.neuroimage.2019.116182_bib12
  article-title: Correcting for blood arrival time in global mean regression enhances functional connectivity analysis of resting state fMRI-BOLD signals
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2016.00311
– volume: 376
  start-page: 33
  year: 1995
  ident: 10.1016/j.neuroimage.2019.116182_bib17
  article-title: Pattern recognition computation using action potential timing for stimulus representation
  publication-title: Nature
  doi: 10.1038/376033a0
– volume: 9
  start-page: 3892
  year: 2019
  ident: 10.1016/j.neuroimage.2019.116182_bib23
  article-title: Resting-state abnormalities in autism spectrum disorders: a meta-analysis
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-40427-7
– volume: 7
  start-page: 101
  year: 2013
  ident: 10.1016/j.neuroimage.2019.116182_bib25
  article-title: Decomposition of spontaneous brain activity into distinct fMRI co-activation patterns
  publication-title: Front. Syst. Neurosci.
  doi: 10.3389/fnsys.2013.00101
– volume: 180
  start-page: 485
  year: 2018
  ident: 10.1016/j.neuroimage.2019.116182_bib27
  article-title: Co-activation patterns in resting-state fMRI signals
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.01.041
SSID ssj0009148
Score 2.329514
Snippet Recently, we proposed a method to estimate repetitive spatiotemporal patterns from resting-state brain activity data (SpatioTemporal Pattern estimation, STeP)...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 116182
SubjectTerms Autism
Big data
Brain mapping
Brain research
Data exchange
Electroencephalography
fMRI
Functional magnetic resonance imaging
Medical imaging
Memory
Neuroimaging
R&D
Research & development
Resting state
Retina
Sensorimotor system
Sensory integration
Spatiotemporal pattern
The autism brain imaging data exchange (ABIDE)
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-RAEG7Eg3hZfO_sqrTgtZ10uvPCk4iiwnjwgd6a6e7KMovGwcxcxb_h3_OXWJV0RjwIAx6TdIWkUo8vSdVXjO3HHrNSorXQpVJCSwBRWFmKDPB9y4K3saTm5MFlenarL-6T-wV23PXCUFlliP1tTG-iddjTD9rsj0ej_jUiA0w3-L5RoJ1mimi3tc7Iyg9ePss8CqnbdrhECVodqnnaGq-GM3L0iJ5LRV4Fxo9U5vF3Keo7CNqkotMV9itgSH7UXuYqW4BqjS0Nwl_ydXZ3gn5LSLT6x59hTH1kGNN43RRPBy6qBz5umDWrmlOHCX_EoMDrqaXPMvX76xunmR14AtF0HPFycHVeb7Db05Ob4zMRBigIhyhsIpTHBxSB89ZZHUexhcSnMaZFSHUCSoPXHhDAJcMoKp1yxNblM3CltUVknVebbLF6quA340OCNj7XiYJCO2Jxk9T1imAmj4cucT2WdTozLrCL05CLB9OVkf03n9o2pG3TarvH5Exy3DJszCFTdI_FdB2kGPMMpoE5ZA9nsl8sbU7p7c4KTPD22iBGljGx9Mge25sdRj-lny_DCp6muIbGguU6pzVbrfXMblfRECpdpH9-dGl_2TJttbU222xx8jyFHURME7vbuMQH0xsXnA
  priority: 102
  providerName: Elsevier
Title Estimating repetitive spatiotemporal patterns from many subjects’ resting-state fMRIs
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811919307736
https://dx.doi.org/10.1016/j.neuroimage.2019.116182
https://www.ncbi.nlm.nih.gov/pubmed/31525496
https://www.proquest.com/docview/2311219591
https://www.proquest.com/docview/2292084891
Volume 203
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbhMxELZoKyEuiPKb0kZG4mpYr71_4oBKlSoFElURFblZsT1bgdpN2k2uqK_R1-NJmNn1JqeinHxYj7Vrj2e-tWe-Yex97NErJVoLXSoltAQQhZWlyAD_tyx4G0tKTh6N0-GF_jpNpuHArQ5hlZ1NbAy1nzs6I_-IOETGxIQiPy9uBFWNotvVUEJjh-0RdRlpdTbNNqS7UrepcIkSOXYIkTxtfFfDF_nrGnctBXgVaDtSmccPuaeH4Gfjhk6fsacBP_LjdsH32SOonrPHo3BD_oL9HOCeJRRaXfJbWFAOGdozXjeB04GH6oovGlbNquaUXcKv0SDwemXpSKb-e3fPqV4HDiCabCNejiZn9Ut2cTr4cTIUoXiCcIjAlkJ5XJwInLfO6jiKLSQ-jdElQqoTUBq89oDgLZlFUemUI6Yun4ErrS0i67x6xXareQVvGJ8RrPG5ThQU2hGDm6SMVwQyeTxzieuxrJsz4wKzOBW4uDJdCNlvs5ltQ7Nt2tnuMbmWXLTsGlvIFN2ymC57FO2dQRewheyntWxAGC1y2FL6sNMCE3Z6bTZ62WPv1o9xj9LFy6yC-Qr7UEmwXOfU53WrPevPVVSAShfpwf8Hf8ue0Ju0gTSHbHd5u4IjhENL22c7H_7IfqP5fbZ3fDL5fk7t2bfhGNsvg_H55B947hIE
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIgEXxLMEChgJjhbrtfclhBCCVgltekCtyM3E9iwCtZvQTYS48Tf4E_wofgkz-0hORbn0vDuWdzz-5vN6HgDP40BeKTFGmlJraRSiLJwqZYZ03nIYXKw4OXl8lA5PzIdJMtmCP30uDIdV9pjYAHWYef5H_pJ4iIq5Eop6M_8uuWsU3672LTRaszjAnz_oyFa_Hr2n9X0Rx_t7x--GsusqID1Rk4XUgWYdoQ_OO0NHf4dJSGPyFZiaBLXBYAISq0mmUVR67bmEVcjQl84VkfNB07hX4Cp9YsSHvWySrYv8KtOm3iVa5koVXeRQG0_W1Kf8ekYowQFlBWFVqvL4Ind4Ed1t3N7-LbjZ8VXxtjWw27CF1R24Nu5u5O_Cpz3CCGa91RdxjnPOWSP8FHUTqN3VvToV86aKZ1ULzmYRZwRAol46_gVU__31W3B_EBpANtlNohx_HNX34ORS1HoftqtZhQ9ATJlGhdwkGgvjuWKc4gxbIk55PPWJH0DW68z6rpI5N9Q4tX3I2je71rZlbdtW2wNQK8l5W81jA5miXxbbZ6sSvlpyORvIvlrJdoymZSobSu_2VmA7ZKnteh8M4NnqMWECX_RMK5wt6R1uQZabnN_Zaa1n9bmaG16ZIn34_8GfwvXh8fjQHo6ODh7BDZ5VG8SzC9uL8yU-Jiq2cE8a-xfw-bI33D9aukze
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VVKq4IP4JFFgkOK7qXa8dW6iqgCZqKImqioreluyPEah1Qp2o4sZr9FV4HJ6EGXudnIpy6dmelT3e_eZb78w3AK-lw6iUKMVVEcdcCe95bkTBex73W8Y7IwUVJ4_G6cGJ-nianG7An7YWhtIqW0ysgdpNLf0j30EeIiQpoYidIqRFHO0P9mY_OXWQopPWtp1GM0UO_a9L3L5Vu8N9_NZvpBz0P3844KHDALdIU-Y8dvgGkbfOWKNkJI1PXCoxbvhUJT5W3innkeEkkygqbGxJzsr1vC2MySNjXYzj3oLNHu2KOrD5vj8-Ol5J_grVFOIlMc-EyEMeUZNdVqtVfj9HzKD0shyRKxWZvC44Xkd-6yA4uAt3Antl75rpdg82fHkftkbhfP4BfOkjYhAHLr-xCz-jCjZEU1bVadtBBeuMzWpNz7JiVNvCzhGOWLUw9EOo-vv7ilG3EByA17VOrBgdD6uHcHIjjn0EnXJa-ifAJkSqXKaS2OfKkn6coHpbpFGZnNjEdqHX-kzboGtO7TXOdJvA9kOvvK3J27rxdhfE0nLWaHusYZO3n0W3tauIthoD0Bq2b5e2gd80vGVN6-12FuiAM5VerYouvFpeRoSgY59J6acLvIcakmUqo3seN7Nn-boxtb9Sefr0_4O_hC1cbPrTcHz4DG7TQzUZPdvQmV8s_HPkZXPzIiwABl9ves39Ax2SUnk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+repetitive+spatiotemporal+patterns+from+many+subjects%E2%80%99+resting-state+fMRIs&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Takeda%2C+Yusuke&rft.au=Itahashi%2C+Takashi&rft.au=Sato%2C+Masa-aki&rft.au=Yamashita%2C+Okito&rft.date=2019-12-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=203&rft_id=info:doi/10.1016%2Fj.neuroimage.2019.116182&rft.externalDocID=S1053811919307736
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon