Deterministic control of ferroelectric polarization by ultrafast laser pulses

Ultrafast light-matter interactions present a promising route to control ferroelectric polarization at room temperature, which is an exciting idea for designing novel ferroelectric-based devices. One emergent light-induced technique for controlling polarization consists in anharmonically driving a h...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 13; no. 1; p. 2566
Main Authors Chen, Peng, Paillard, Charles, Zhao, Hong Jian, Íñiguez, Jorge, Bellaiche, Laurent
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 10.05.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Ultrafast light-matter interactions present a promising route to control ferroelectric polarization at room temperature, which is an exciting idea for designing novel ferroelectric-based devices. One emergent light-induced technique for controlling polarization consists in anharmonically driving a high-frequency phonon mode through its coupling to the polarization. A step towards such control has been recently accomplished, but the polarization has been reported to be only partially reversed and for a short lapse of time. Such transient partial reversal is not currently understood, and it is presently unclear if full control of polarization, by, e.g., fully reversing it or even making it adopt different directions (thus inducing structural phase transitions), can be achieved by activating the high-frequency phonon mode via terahertz pulse stimuli. Here, by means of realistic simulations of a prototypical ferroelectric, we reveal and explain (1) why a transient partial reversal has been observed, and (2) how to deterministically control the ferroelectric polarization thanks to these stimuli. Such results can provide guidance for realizing original ultrafast optoferroic devices. Controlling the electric polarization in ferroelectric materials at room temperature is an important aspect in the design of novel ferroelectric-based devices. Simulations of a typical ferroelectric material now provide insights into why and how its ferroelectric polarization can be partially reversed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-30324-5