Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton
The use of dual-objective detection with astigmatism-based three-dimensional stochastic optical reconstruction microscopy (STORM) imaging improves resolution more than twofold and removes noise in resulting super-resolution images. This allowed detailed fluorescence imaging of distinctive features o...
Saved in:
Published in | Nature methods Vol. 9; no. 2; pp. 185 - 188 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.02.2012
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 1548-7091 1548-7105 1548-7105 |
DOI | 10.1038/nmeth.1841 |
Cover
Loading…
Summary: | The use of dual-objective detection with astigmatism-based three-dimensional stochastic optical reconstruction microscopy (STORM) imaging improves resolution more than twofold and removes noise in resulting super-resolution images. This allowed detailed fluorescence imaging of distinctive features of the three-dimensional actin cytoskeleton ultrastructure with single-filament resolution in cells.
By combining astigmatism imaging with a dual-objective scheme, we improved the image resolution of stochastic optical reconstruction microscopy (STORM) and obtained <10-nm lateral resolution and <20-nm axial resolution when imaging biological specimens. Using this approach, we resolved individual actin filaments in cells and revealed three-dimensional ultrastructure of the actin cytoskeleton. We observed two vertically separated layers of actin networks with distinct structural organizations in sheet-like cell protrusions. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1548-7091 1548-7105 1548-7105 |
DOI: | 10.1038/nmeth.1841 |