Colony adaptive response to simulated heat waves and consequences at the individual level in honeybees (Apis mellifera)

Since climate change is expected to bring more severe and frequent extreme weather events such as heat waves, assessing the physiological and behavioural sensitivity of organisms to temperature becomes a priority. We therefore investigated the responses of honeybees, an important insect pollinator,...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 7; no. 1; pp. 3760 - 11
Main Authors Bordier, Célia, Dechatre, Hélène, Suchail, Séverine, Peruzzi, Mathilde, Soubeyrand, Samuel, Pioz, Maryline, Pélissier, Michel, Crauser, Didier, Conte, Yves Le, Alaux, Cédric
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 19.06.2017
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Since climate change is expected to bring more severe and frequent extreme weather events such as heat waves, assessing the physiological and behavioural sensitivity of organisms to temperature becomes a priority. We therefore investigated the responses of honeybees, an important insect pollinator, to simulated heat waves (SHW). Honeybees are known to maintain strict brood thermoregulation, but the consequences at the colony and individual levels remain poorly understood. For the first time, we quantified and modelled colony real-time activity and found a 70% increase in foraging activity with SHW, which was likely due to the recruitment of previously inactive bees. Pollen and nectar foraging was not impacted, but an increase in water foragers was observed at the expense of empty bees. Contrary to individual energetic resources, vitellogenin levels increased with SHW, probably to protect bees against oxidative stress. Finally, though immune functions were not altered, we observed a significant decrease in deformed wing virus loads with SHW. In conclusion, we demonstrated that honeybees could remarkably adapt to heat waves without a cost at the individual level and on resource flow. However, the recruitment of backup foraging forces might be costly by lowering the colony buffering capacity against additional environmental pressures.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-017-03944-x